By 1.23 x 1024 you mean 10 to the power of 24 molecules? If so all you need to do is divide the number of molecules you have by Avagadros number, 6.022 x 10^23. This will give you the mols of water, or the mols of anything, since there is always 6.022 x 10^23 molecules in 1 mol of substance.
1.23x10^24 atoms/6.022x10^23 atom/mol = 2.04 mol H20
Answer:
Glucose, found in the food animals eat, is broken down during the process of cellular respiration into an energy source called ATP. When excess ATP and glucose are present, the liver converts them into a molecule called glycogen, which is stored for later use.
You must first know that the number of protons and neutrons are same, and neutrons number may vary. Carbon 12 has 6 protons, 6 neutrons and 6 electrons. Sodium 23 has 12 protons , 12 electrons and and 11 neutrons. Silver 108 has 47 protons, 47 electrons and 61 electrons. Finally, Sulfur 32 has 16 protons, 16 nuetrons and 16 electrons. Basically the number of neutrons in an atom can be found by subtracting proton number from mass number
Answer: Option D) covalent bonds between water molecules
In water, hydrogen bonds are best described as covalent bonds between water molecules
Explanation:
The hydrogen bonds between water molecules are covalent bonds because they are formed when oxygen attract the lone electron in hydrogen, thus resulting in the formation of a partially negative charge on the oxygen atom and a partially positive charge on two hydrogen atoms
Thus, the sharing of electrons between oxygen and hydrogen atoms is responsible for the covalent bonds between water molecules
C₀=2 mol/l
c₁=0.400 mol/l
v₁=100.0 ml = 0.1 l
c₁v₁=c₀v₀
v₀=c₁v₁/c₀
v(H₂O)=v₁-v₀
v₀=0.1*0.400/2=0.02 l = 20 ml
v(H₂O)=100 - 20 = 80 ml
It is necessary to mix 20 ml of the feed solution and 80 ml of water.