Can you say please? Just kidding!
The process of science discovery depends upon changing your theories based upons new evidence from new experiments. New technology allows for new experiments, leading to new theories.
This question is hard but I found the answer from merit nation
Grams of Ca(NO₃)₂ produced : 0.985 g
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction
CaCl₂ + 2AgNO₃ → 2AgCl + Ca(NO₃)₂
MW AgNO₃ : 107.9+14+3.16=169.9
mol AgNO₃ :

mol ratio Ca(NO₃)₂ : AgNO₃ = 1 : 2, so mol Ca(NO₃)₂ :

MW Ca(NO₃)₂ : 40.1+2.14+6.16=164.1 g/mol
mass Ca(NO₃)₂ :

Answer:
Lake and River pollution?
Explanation:
Answer:
Option C = electron
Explanation:
Electrons are responsible for the production of colored light.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e-
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
How electrons produce the colored light:
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Other process may involve,
Fluorescence:
In fluorescence the energy is absorbed by the electron having shorter wavelength and high energy usually of U.V region. The process of absorbing the light occur in a very short period of time i.e. 10 ∧-15 sec. During the fluorescence the spin of electron not changed.
The electron is then de-excited by emitting the light in visible and IR region. This process of de-excitation occur in a time period of 10∧-9 sec.
Phosphorescence:
In phosphorescence the electron also goes to the excitation to the higher level by absorbing the U.V radiations. In case of Phosphorescence the transition back to the lower energy level occur very slowly and the spin pf electron also change.