Answer: An object undergoing uniform circular motion is moving
Explanation:
Answer:
it will show a continuous rise in value. The rise will be sinusoidal.
Explanation:
Hey
So first we need to know what the direction of the force is, using your right hand rule point your right hand in the direction of the velocity. You're saying its the z direction, not telling me whether it's into the page or out? Since its a positive z im assuming its coming out. The magnetic field is pushing it upwards, so the force is going in the negative x direction.
The force of a magnetic field is
F = Qv X B
What's weird is that you don't need mass in this equation. Actually you don't even need the formula, its telling you that they're all going in perpendicar directions. the answer is 90 degrees.
Now if you want to know the F just multiply the charge, velocity and magnetic field .
F = GVB
F = 6.048 E -15
Answer : 90 degrees, sin(90) = 1
Answer:
a) in the upper position. b) in the lower position. c) in the lower position. d) in the upper position. f) Its kinetic and potential energy will be 0, but the energy is transferred to the element or body that stopped the movement of the pendulum
Explanation:
In the attached image we have the sketch of a pendulum system.
A) The potential energy is maximum when the pendulum is in the upper position (image, fig 1) because the elevation (h) is maximum with respect to the reference point.
B) the potential energy is minimum when the pendulum is in the lower pasition (image, fig 2) because the elevation (h) is cero with respect to the reference point.
Note: When the pendulum is coming down the potential energy is transforming in kinetic energy.
C) The kinetic energy is maximum when the pendulum is in the lower position (image, fig 2), because the potential energy has been transformed in kinetic energy.
D) The kinetic energy is maximum when the pendulum is in the upper position (image, fig 1) because at this moment the pendulum is at rest it means its velocity is 0. We know that the kinetic energy depends on the velocity.
f) The energy is transferred to the element or body that stopped the movement of the pendulum
According to the right-hand thumb rule, the forefinger gives the velocity of charge, the thumb gives the magnetic force and the center finger gives the direction of magnetic field.
then, as shown in the picture, the <span>direction of the magnetic force on the charge is in the right direction.</span>