The answer is either
b A system in which Newton's Laws are valid
or
c A system in which there are no external forces.
Explanation:
not a, and not d
There are energy changes in a closed system.
A closed system obeys the conservation laws in its physical description.
Answer:
-252.52
Explanation:
L = Distance between lenses = 10 cm
D = Near point = 25 cm
= Focal length of objective = 0.9 cm
= Focal length of eyepiece = 1.1 cm
Magnification of a compound microscope is given by

The angular magnification of the compound microscope is -252.52
Answer:
The force pulling the roller along the ground is 128.55 N
Explanation:
A force of 200 N acting at an angle of 50° with the ground level
This force is pulled a garden roller
We need to find the force pulling the roller along the ground
The force that pulling the roller along the ground is the horizontal
component of the force acting
→ The force acting is 200 N at direction 50° with ground (horizontal)
→ The horizontal component = F cosФ
→ F = 200 N , Ф = 50
→ The horizontal component = 200 cos(50) = 128.55 N
128.55 N is the horizontal component of the force that pulling the
roller along the ground
<em>The force pulling the roller along the ground is 128.55 N</em>
The first rule of vectors is that the horizontal and vertical components are separate. Disregarding air resistance, the only thing we have to worry about is gravity.
The appropriate suvat to use for the vertical component is v = u +at
I will take a to be -9.81, you may have to change it to be 10 if your qualification likes g to be 10.
v = 30 + (-9.81x2)
v = 30 - 19.62
=10.38m/s
Therefore we know that after 2.0 s the vertical component will be 10.38ms^-1, ie 10m/s as the answers given are all to 2sf.
The horizontal component is completely separate to the vertical component and since there is no air resistance, it will remain constant throughout the projectiles trajectory. Therefore it will remain at 40ms^-1.
Combining this together we get:
(1) vx=40m/s and vy=10m/s
Answer:
A. 
B. 
C. 
Explanation:
Given:
- spring constant,

- mass attached,

A)
for a spring-mass system the frequency is given as:



B)
frequency is given as:



C)
Time period of a simple harmonic motion is given as:

