Will also have low frequency
Answer:
μ=0.151
Explanation:
Given that
m= 3.5 Kg
d= 0.96 m
F= 22 N
v= 1.36 m/s
Lets take coefficient of kinetic friction = μ
Friction force Fr=μ m g
Lets take acceleration of block is a m/s²
F- Fr = m a
22 - μ x 3.5 x 10 = 3.5 a ( take g =10 m/s²)
a= 6.28 - 35μ m/s²
The final speed of the block is v
v= 1.36 m/s
We know that
v²= u²+ 2 a d
u= 0 m/s given that
1.36² = 2 x a x 0.96
a= 0.963 m/s²
a= 6.28 - 35μ m/s²
6.28 - 35μ = 0.963
μ=0.151
I think all of those are examples
Answer:
The inventors claim is not real
a) No the the freezer cannot operate in such conditions
Explanation:
From the question we are told that
The power input is 
The rate of heat transfer 
The temperature of the freezer content is 
The ambient temperature is 
Generally the coefficient of performance of a refrigerator at idea conditions is mathematically represented as

substituting values


Generally the coefficient of performance of a refrigerator at real conditions is mathematically represented as

substituting values


Now given that the COP of an ideal refrigerator is less that that of a real refrigerator then the claims of the inventor is rejected
This is because the there are loss in the real refrigerator cycle that are suppose to reduce the COP compared to an ideal refrigerator cycle where there no loss that will reduce the COP
A solution is a value or a collection of values.. when substituted for the unknowns, the equation become an equality.
Example : x + 2 = 7
When we out the 5 in place of x we get: 5 + 2 = 2