Answer: 217.52 N
Explanation: The applied force is 20 N, the distance covered is 12.0 m and the angle is 25° above the horizontal.
Hence the formulae that defines work done is given by
W = Force × distance
But since the force has been inclined at an angle θ above the horizontal, the horizontal component of force is neccesary to produce the required motion to make the child do work on the wagon.
Hence
Work done = (horizontal component of force) × distance
Work done = F cos θ × distance
Work done = 20 cos 25 × 12 = 217.52 N
All Mountains are built through a general process called "deformation" of the crust of the Earth. Deformation is a fancy word which could also mean "folding". An example of this kind of folding comes from the process described below.
<span>When two sections of the Earth's lithosphere collide, rather than being subducted, where one slab of lithosphere is forced down to deeper regions of the Earth, the slabs pile into each other, causing one or both slabs can fold up like an accordion. This process elevates the crust, folds and deforms it heavily, and produces a mountain range. Mountain building and mantle subduction usually go together. </span>
(a) 10 GHz is the frequency of microwave radiation.
(b) 0.167 ms is required by the microwave to travel between two mountains.
Answer:
Explanation:
(a). 1 MHz is the frequency of microwave radiation.
(b) 0.167 ms is required by the microwave to travel between two mountains.
Answer:
Explanation:
a. Frequency is the measure of number of times a same thing will be repeated in a given time interval for a given time. And wavelength is the measure of distance between two successive crests or troughs. So wavelength and frequency are inversely proportional to each other. And velocity of light is the proportionality constant.
So frequency of microwave radiation = Speed of light/Wavelength of radiation
Frequency = 
Frequency = 
So 10 GHz is the frequency of microwave radiation.
b). As microwave is a part of light waves, so it will be experiencing the speed of light.
As the speed is 3*
m/s and the distance between the two mountains is given as 50 km, then time can be calculated as
Time = Distance/Velocity
Time = 
So time = 0.167 ms.
Thus, 0.167 ms is required by the microwave to travel between two mountains.
IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.