The questions from this lot which could be tested in a scientific manner would be "what causes some people to be color-blind"
and
"what are the best shoes to wear when exercising"
Both of these questions can be tested in a scientific way through an experiment.
Answer:
197.76 m
Explanation:
r = Radius of the path = 20.6 km = 
= The angle subtended by moon = 
Distance traveled is given by



The distance traveled by the jet is 197.76 m
Answer:
a) Initial speed of the ball = 14.45 m/s
b) At height 6 m speed of ball = 9.55 m/s
c) Maximum height reached = 10.65 m
Explanation:
a) We have equation of motion
, where s is the displacement, u is the initial velocity, t is the time taken and a is the acceleration.
s = 6 m, t = 0.5 seconds, a = acceleration due to gravity value = -9.8
Substituting

Initial speed of the ball = 14.45 m/s
b) We have equation of motion
, where v is the final velocity
s = 6 m, u = 14.45 m/s, a = -9.8
Substituting

So at height 6 m speed of ball = 9.55 m/s
c) We have equation of motion
, where v is the final velocity
u = 14.45 m/s, v =0 , a = -9.8
Substituting

Maximum height reached = 10.65 m
Well the trivial answer is zero, since there is indeed a "zero vector". Assuming you aren't allowed to use the zero vector you would need at least two. They would be antiparallel and of equal magnitude. (That is be pointing in opposite directions and have the same length)
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).