Answer:
c)At a distance greater than r
Explanation:
For a satellite in orbit around the Earth, the gravitational force provides the centripetal force that keeps the satellite in motion:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance between the satellite and the Earth's centre
v is the speed of the satellite
Re-arranging the equation, we write

so we see from the equation that when the speed is higher, the distance from the Earth's centre is smaller, and when the speed is lower, the distance from the Earth's centre is larger.
Here, the second satellite orbit the Earth at a speed less than v: this means that its orbit will have a larger radius than the first satellite, so the correct answer is
c)At a distance greater than r
Splitting<span> atoms. 'Fission' is another word for </span>splitting<span>. The process of </span>splitting<span> a nucleus is called nuclear fission. ... For fission to happen, the </span>uranium-235<span> or plutonium-239 nucleus must first absorb a neutron.</span>
Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be

Answer:
V(average)=6.37 V
Explanation:
Given Data
Peak Voltage=10V
Frequency=10 kHZ
To Find
Average Voltage
Solution
For this first we need to find Voltage peak to peak
So
Voltage (peak to peak)= 2× voltage peak
Voltage (peak to peak)= 2×10
Voltage (peak to peak)= 20 V
Now from Voltage (peak to peak) formula we can find the Average Voltage
So
Voltage (peak to peak)=π×V(average)
V(average)=Voltage (peak to peak)/π
V(average)=20/3.14
V(average)=6.37 V