Answer:
All of the above.
Explanation:
All Machines make work easier.
They can move objects.
They have multiple parts.
And the use energy.
<span>I think they were also too skeptic to believe the continent did move or pull apart, even today do you believe that the
continents broke from one big flat plate, and that they pulled apart?
They also wonder what large force would be responsible for the movement.
It
was much later that evidences from plant and animal features that had
similarity from two different planets came up that scientists began
accepting the idea of continental drift.
And similar rock strata from two different opposite continents, showed similar rock strata.
All these evidences came up much later after Alfred Wengener.
So Alfred Wengener was honored Posthumously</span>
The gravitational force between the two objects A) It increases.
Explanation:
The gravitational force between two objects is given by:
(1)
where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, object A and object B are initially at a distance of
r = 100 m
And at that distance, the force between them is
F
Later, object A gains some mass. We notice from eq.(1) that the gravitational force is directly proportional to the mass: therefore, if the mass of either of the two objects increases, then the gravitational force between them also increases. Therefore, the new force will be larger than the original force:
F' > F
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
I will answer this in English, we can translate it to:
Why if you charge a mate by an amount of time you are not doing work?
This happens because work is defined as the displacement done by a force:
W = d*F
where W is work, d is the distance, and F is the force.
This means that the amount of time that you are charging your mate does not affect the mechanical work, the only time that you are doing work is when you are lifting him.
Answer:
1.2 x 10¹¹ kgm²/s
Explanation:
m = mass of the airplane = 39043.01
r = altitude of the airplane = 9.2 km = 9.2 x 1000 m = 9200 m
v = speed of airplane = 335 m/s
L = Angular momentum of airplane
Angular momentum of airplane is given as
L = m v r
Inserting the values
L = (39043.01 ) (335) (9200)
L = (39043.01 ) (3082000)
L = 1.2 x 10¹¹ kgm²/s