Answer:
R = 35.27 Ohms
Explanation:
Given the following data;
Voltage = 230V
Power = 1500W
To find the resistance, R;
Power = V²/R
Where:
V is the voltage measured in volts.
R is the resistance measured in ohms.
Substituting into the equation, we have;
1500 = 230²/R
Cross-multiplying, we have;
1500R = 52900
R = 52900/1500
R = 35.27 Ohms.
Therefore, the resistance which the heating element needs to have is 35.27 Ohms.
as the surface area increases the rate of reaction also increases.
Explanation:
Answer:
The tensile stress on the wire is 550 MPa.
Explanation:
Given;
Radius of copper wire, R = 3.5 mm
extension of the copper wire, e = 5.0×10⁻³ L
L is the original length of the copper wire,
Young's modulus for copper, Y = 11×10¹⁰Pa.
Young's modulus, Y is given as the ratio of tensile stress to tensile strain, measured in the same unit as Young's modulus.

Therefore, the tensile stress on the wire is 550 MPa.