Answer:
The Acceleration will increase
Explanation:
Newton's Second Law of motion: It states that the rate of change of momentum is directly proportional to the applied force and takes places along the direction of the force.
It can be expressed mathematically as,
F ∝ m(v-u)/t
Where (v-u)/t = a
F = kma.
F = force, m = mass of the body, a = acceleration, k = constant of proportionality which tend to unity for a unit force, a unit mass, and a unit acceleration.
Therefore,
F = ma.
From the equation above,
If the net force acting on a body increase, while the mass of the body remains constant, the acceleration will also increase.
Answer:
h≅ 58 m
Explanation:
GIVEN:
mass of rocket M= 62,000 kg
fuel consumption rate = 150 kg/s
velocity of exhaust gases v= 6000 m/s
Now thrust = rate of fuel consumption×velocity of exhaust gases
=6000 × 150 = 900000 N
now to need calculate time t = amount of fuel consumed÷ rate
= 744/150= 4.96 sec
applying newton's law
M×a= thrust - Mg
62000 a=900000- 62000×9.8
acceleration a= 4.71 m/s^2
its height after 744 kg of its total fuel load has been consumed


h= 58.012 m
h≅ 58 m
Answer:
2.96×10⁸ m/s
Explanation:
Speed = distance / time
v = (2 × 3.85×10⁸ m) / (2.60 s)
v = 2.96×10⁸ m/s