Answer:
0.07°C
Explanation:
<u>solution:</u>
the speed of a sound in water is<u>:</u>
v(T)=1480+4(T-4°C)
<u>at 4°C the travel time is:</u>
t(4◦C) = (
7600 × 103 m
)
/ (1480 m/s) = 5202.7 s
<u>5°C, the travel time is:</u>
t(5◦C) = (
7600 × 103 m
)
/ (1484 m/s) = 5188.7 s
<u>one degree C corresponds to a ∆t of 14 s so temperature difference is:</u>
ΔT=1 s/14 s=0.07◦C
Answer:
f = 276.6 Hz
Explanation:
This musical instrument can be approximated to a tube system where each tube has one end open and the other closed.
In the closed part there is a node and in the open part a belly or antinode. Therefore the wavelength is
L = λ/ 4
speed is related to wavelength and frequency
v = λ f
λ = v / f
we substitute
L = v / 4f
f = v / 4L
the speed of sound at 20ºC is
v = 343 m / s
let's calculate
f =
f = 276.6 Hz
The animals which were delisted from the endangered species in July 2019 is Grey Wolf
Answer: Grey wolf
<u>Explanation:</u>
The ultimate goal of the Endangered Species Act was to preserve the species that are in the verge of extinction. The species are conserved and taken care of till they can be left free in the wild for it to survive of it's own.If the species has crossed all the recovery goals then they are delisted.
The grey wolf in July 2019 was delisted from the endangered species list. Now it is calculated that there are 6000 wolves that are found. But yet the grey wolf has not returned back to their livelihood and also to their sutable habitat.
Answer:
trail mix, soup, and gold
hope this helps
have a good day :)
Explanation:
I don't completely understand your drawing, although I can see that you certainly
did put a lot of effort into making it. But calculating the moment is easy, and we
can get along without the drawing.
Each separate weight has a 'moment'.
The moment of each weight is:
(the weight of it) x (its distance from the pivot/fulcrum) .
That's all there is to a 'moment'.
The lever (or the see-saw) is balanced when (the sum of all the moments
on one side) is equal to (the sum of the moments on the other side).
That's why when you're on the see-saw with a little kid, the little kid has to sit
farther away from the pivot than you do. The kid has less weight than you do,
so he needs more distance in order for his moment to be equal to yours.