Answer:
The car will travel 30 miles during the 30-minutes period of acceleration.
Explanation:
Given data :
Initial velocity = v₁ = 50 miles/hour
Final velocity = v₂ = 70 miles/hour
Time = t = 30 min = 0.5 hour
Using the definition of acceleration, we find the acceleration (a)
a = (v₂ - v₁) ÷ t
a = (70 - 50) ÷ 0.5
a = 20 ÷ 0.5
a = 40 miles/hour²
Using 3rd equation of motion, we find the distance travel (s)
2as = v₂² - v₁²
2(40)s = 70² - 50²
80 × s = 4900 - 2500
s = 2400 ÷ 80
s = 30 miles
Answer:
1.5 km/s²
Explanation:
Given that:
a car starts from rest; it means the initial velocity (u) = 0 km/hr = 0 m/s
after time (t) = 20 seconds
the final velocity = 108 km/hr = 30 m/s
The acceleration (a) of the car can be determined by using the formula:
a = 1.5 km/s²
Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by
As the energy in the system is conserved we have
The speed of the 8 kg block just before collision is 3.258 m/s
Solid to liquid
Liquid to solid
By adding or removing heat energy aka thermal energy