Answer:
Explanation:
Given that,
Mass of ball m = 2kg
Ball traveling a radius of r1= 1m.
Speed of ball is Vb = 2m/s
Attached cord pulled down at a speed of Vr = 0.5m/s
Final speed V = 4m/s
Let find the transverse component of the final speed using
V² = Vr²+ Vθ²
4² = 0.5² + Vθ²
Vθ² = 4²—0.5²
Vθ² = 15.75
Vθ =√15.75
Vθ = 3.97 m/s.
Using the conservation of angular momentum,
(HA)1 = (HA)2
Mb • Vb • r1 = Mb • Vθ • r2
Mb cancels out
Vb • r1 = Vθ • r2
2 × 1 = 3.97 × r2
r2 = 2/3.97
r2 = 0.504m
The distance r2 to the hole for the ball to reach a maximum speed of 4m/s is 0.504m
The required time,
Using equation of motion
V = ∆r/t
Then,
t = ∆r/Vr
t = (r1—r2) / Vr
t = (1—0.504) / 0.5
t = 0.496/0.5
t = 0.992 second
Let
be the average acceleration over the first 2.46 seconds, and
the average acceleration over the next 6.79 seconds.
At the start, the car has velocity 30.0 m/s, and at the end of the total 9.25 second interval it has velocity 15.2 m/s. Let
be the velocity of the car after the first 2.46 seconds.
By definition of average acceleration, we have


and we're also told that

(or possibly the other way around; I'll consider that case later). We can solve for
in the ratio equation and substitute it into the first average acceleration equation, and in turn we end up with an equation independent of the accelerations:


Now we can solve for
. We find that

In the case that the ratio of accelerations is actually

we would instead have

in which case we would get a velocity of

The force of gravity on earth is 9.807 m/s^2 (or meters per second per second).
To determine the force applied, multiply the mass of the package (5.7 kg) by the force of gravity on Earth (9.807 m/s^2).
5.7 x 9.807 = 55.86 N The answer is D.
Note: the actual force is 55.89 Newtons.
Balanced forces is the answer.
Answer:
5 atoms of Boron
Explanation:
Boron makes up approximately 15.944% of the mass and the rest of the 84.056% is Fluorine. There is 5 Atoms because Boron atomic mass is 10.811 in 1 molecule of BF3 and you wanted 5 Molecules.