Answer: The taxi is moving with reference to A) Monument Circle. For each leg of the trip, the taxi's A) Average speed stays the same, but it's B) Average velocity changes.
Explanation: Brainliest Please!!!!
Sound needs medium to travel and it can not travel without medium
so sound wave is a travelling wave
now we also know that sound wave propagate in form of rarefaction and compression.
So all medium particles travel in the direction of wave only
so it is a longitudinal wave also
so correct answer will be
<em>mechanical longitudinal </em>
Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J
Answer: True
A water pump
belong to a positive displacement pump that provides constant flow of water at
fixed speed, regardless of changes in the counter pressure. The two main types
of positive displacement pump are rotary pumps and reciprocating pumps.
Moreover, water
pump is a reciprocating positive displacement pump that have an expanding
cavity on the suction side and a decreasing cavity on the discharge side. In
water pumps, the liquid flows into the pumps as the cavity on the suction side
expands and then the liquid flows out of the discharge as the cavity collapses
providing water in a pail.