It’s half the mass of the object by its velocity ^2
Answer:
I think its Pound or a gram
Here we go.
My abbreviations; KE = Kinetic Energy; GPE = Gravitational Potential Energy.
So first off, we know the fish has KE right when the bird releases it. Why? Because it has horizontal velocity after released! So let’s calculate it:
KE = 1/2(m)(V)^2
KE = 1/2(2)(18)^2
KE = 324 J
Nice!
We also know that the fish has GPE at its maximum height before release:
GPE = mgh
GPE = (2)(9.81)(5.40)
GPE = 105.95 J
Now, based on the *queue dramatic voice* LAW OF CONSERVATION OF ENERGY, we know all of the initial energy of the fish will be equal to the amount of final energy. And since the only form of energy when it hits the water is KE, we can write:
KEi + GPEi = KEf
(Remember - we found the initial energies before!)
(324) + (105.95) = KEf
KEf = 429.95J
And that’s you’re final answer! Notice how this value is MORE than the initial KE from before (324 J) - this is because all of the initial GPE from before was transformed into more KE as the fish fell (h decreased) and sped up (V increased).
If this helped please like it and comment!
The formula is P = E/t, where P means power in watts, E means energy j , and t means time in seconds. This formula states that power is the consumption of energy per unit of time.
P = 15 M / 10*60
M = mega = 10⁶
15 *10⁶ / 600
= 25000 watt
Answer:
The impulse transferred to the nail is 0.01 kg*m/s.
Explanation:
The impulse (J) transferred to the nail can be found using the following equation:

Where:
: is the final momentum
: is the initial momentum
The initial momentum is given by:

Where 1 is for the hammer and 2 is for the nail.
Since the hammer is moving down (in the negative direction):
And because the nail is not moving:

Now, the final momentum can be found taking into account that the hammer remains in contact with the nail during and after the blow:
Since the hammer and the nail are moving in the negative direction:
=
= -9.7 m/s
Finally, the impulse is:

Therefore, the impulse transferred to the nail is 0.01 kg*m/s.
I hope it helps you!