Rolling friction .<span> the force that slows down the movement of a rolling object</span>
sliding friction.
Sliding friction : The opposing force that comes into play when
one body is actually sliding over the surface of the other body
is called sliding friction. e.g. A flat block is moving over a
horizontal table.
Kinetic or dynamic friction: If the applied force is increased further
and sets the body in motion, the friction opposing the motion is called
kinetic friction
Answer:
1 W = 1 J / sec Definition of watt is 1 joule / sec
So if a bulb uses 75 J / sec it must use
75 J/s * 60 sec / min = 4500 J/min energy used by bulb
If bulb is 15% efficient then the light delivered is
P = 4500 J / min * .15 = 675 J / min
Answer:


Explanation:
<u>Horizontal Launch</u>
When an object is thrown horizontally with a speed v from a height h, it describes a curved path ruled by gravity until it eventually hits the ground.
The horizontal component of the velocity is always constant because no acceleration acts in that direction, thus:
vx=v
The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

The horizontal component of the velocity is always the same:

The vertical component at t=5.5 s is:


Answer:
d
Explanation:
In physics and engineering, a free body diagram (force diagram, or FBD) is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a body in a given condition.
Answer:
Answer in Explanation
Explanation:
Whenever we talk about the gravitational potential energy, it means the energy stored in a body due to its position in the gravitational field. Now, we know that in the gravitational field the work is only done when the body moves vertically. If the body moves horizontally on the same surface in the Earth's Gravitational Field, then the work done on the body is considered to be zero. Hence, the work done or the energy stored in the object while in the gravitational field is only possible if it moves vertically. This vertical distance is referred to as height. <u>This is the main reason why we require height in the P.E formula and calculations.</u>
The derivation of this formula is as follows:
Work = Force * Displacement
For gravitational potential energy:
Work = P.E
Force = Weight = mg
Displacement = Vertical Displacement = Height = h
Therefore,
P.E = mgh