Answer:
Explanation:
To solve the problem, we must know the kind of compounds we are dealing with.
For the first compound, P1 and second compound P2:
N O N O
Mass percent 64.17 35.73 47.23 52.79
Atomic mass 14 16 14 16
Number of
moles 64.17/14 35.73/16 47.23/14 52.79/16
4.58 2.23 3.37 3.30
Simplest
ratio 4.58/2.23 2.23/2.23 3.37/3.30 3.3/3.3
2 1 1 1
P1 compound is N₂O
P2 compound is NO
These are the compounds,
In N₂O = 28:16
NO = 14:16
This is the ratio of nitrogen to a fixed mass of oxygen for the two compounds.
Answer:
The molar mass is determined by applying the Ideal Gas Law, PV = nRT, where P is the pressure (in atm), V is the volume (in L), n is the number of moles of gas, R is the universal gas constant (0.08206 L∙atm/mol∙K), and T is the temperature (in K).
Hope this helps! :)
A formula giving the proportions of the elements present in a compound but not the actual numbers or arrangement of atoms.
88.98 %
The Balance Chemical Equation is as follow,
2 HCl + Pb(NO₃)₂ → 2 HNO₃ + PbCl₂
According to equation,
331.2 g (1 mole) Pb(NO₃)₂ produces = 278.1 g (1 mole) PbCl₂
So,
870 g of Pb(NO₃)₂ will produce = X g of PbCl₂
Solving for X,
X = (870 g × 278.1 g) ÷ 331.2 g
X = 730.5 g of PbCl₂
Therefore,
Theoretical Yield = 730.5 g
Also as given,
Actual Yield = 650 g
So using following formula for percentage yield,
%age Yield = (Actual Yield / Theoretical Yield) × 100
Putting values,
%age Yield = (650 g / 730.5 g) × 100
%age Yield = 88.98 %
Brianliest please and thank you.
Answer:
I don't know I'm sorry I will tell you another answer asks me to