Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M
Answer:
A. maintain electrical neutrality in the half-cells via migration of ions
Explanation:
Salt bridge -
For an electrochemical reaction , involving an anode and a cathode , both the electrodes are connect via a salt bridge to complete the circuit for the reaction .
One of the very important use of a salt bridge is to maintain the electrical neutrality of the respective half cells , which is achieved by the movement of ions .
Hence , from the given options , the correct option is ( a ) .
Answer:
The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding shells of electrons. ... The value of the radius may depend on the atom's state and context.
Explanation:
The ground state electron configuration of ground state gaseous neutral tin is 4d to the power of 10. 5s to the power of 2. And 5p to the power of 2. And the term symbol is 3P0