Answer:
Sorry, but I do not understand Polish. But it appears that it is wanting you to find the area of this shape?
Przepraszam, ale nie rozumiem polskiego. Wygląda na to, że chcesz znaleźć obszar tego kształtu?
Step-by-step explanation:
Area of entire trapezoid = <span>((sum of the bases) ÷ 2) • height
Trapezoid Area = (51 / 2) * 26
</span><span>Trapezoid Area = 663
UN-shaded triangle area = .5 * base * height
</span><span>UN-shaded triangle area = .5 * 23 * 26
</span><span>UN-shaded triangle area = 299
SHADED Trapezoid Area = 663 -299
</span><span>SHADED Trapezoid Area = 364
</span>
The range is {-2, -1, 0, 1, 2}.
Answer:
yes.
Step-by-step explanation:
by performing the vertical line test, you can see that the line only goes through one point, so it is a function.
When you roll a number cube, there is a possibility of a number from 1 to 6 appearing. i.e. 1, 2, 3, 4, 5, or 6 can appear.
The same goes for the second number cube.
The table below presents the possible outcomes of rolling two number cubes with the sum written as exponent.
![\begin{center} \begin{tabular} {| c || c | c | c | c | c | c |} & 1 & 2 & 3 & 4 & 5 & 6 \\ [1ex] 1 & \{1,1\}^2 & \{1,2\}^3 & \{1,3\}^4 & \{1,4\}^5 & \{1,5\}^6 & \{1,6\}^7 \\ 2 & \{2,1\}^3 & \{2,2\}^4 & \{2,3\}^5 & \{2,4\}^6 & \{2,5\}^7 & \{2,6\}^8 \\ 3& \{3,1\}^4 & \{3,2\}^5 & \{3,3\}^6 & \{3,4\}^7 & \{3,5\}^8 & \{3,6\}^9 \\ 4 & \{4,1\}^5 & \{4,2\}^6 & \{4,3\}^7 & \{4,4\}^8 & \{4,5\}^9 & \{4,6\}^{10} \\ \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%0A%5Cbegin%7Btabular%7D%20%7B%7C%20c%20%7C%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%20c%20%7C%7D%0A%26%201%20%26%202%20%26%203%20%26%204%20%26%205%20%26%206%20%5C%5C%20%5B1ex%5D%0A1%20%26%20%5C%7B1%2C1%5C%7D%5E2%20%26%20%5C%7B1%2C2%5C%7D%5E3%20%26%20%5C%7B1%2C3%5C%7D%5E4%20%26%20%5C%7B1%2C4%5C%7D%5E5%20%26%20%5C%7B1%2C5%5C%7D%5E6%20%26%20%5C%7B1%2C6%5C%7D%5E7%20%5C%5C%20%0A2%20%26%20%5C%7B2%2C1%5C%7D%5E3%20%26%20%5C%7B2%2C2%5C%7D%5E4%20%26%20%5C%7B2%2C3%5C%7D%5E5%20%26%20%5C%7B2%2C4%5C%7D%5E6%20%26%20%5C%7B2%2C5%5C%7D%5E7%20%26%20%5C%7B2%2C6%5C%7D%5E8%20%5C%5C%20%0A3%26%20%5C%7B3%2C1%5C%7D%5E4%20%26%20%5C%7B3%2C2%5C%7D%5E5%20%26%20%5C%7B3%2C3%5C%7D%5E6%20%26%20%5C%7B3%2C4%5C%7D%5E7%20%26%20%5C%7B3%2C5%5C%7D%5E8%20%26%20%5C%7B3%2C6%5C%7D%5E9%20%5C%5C%20%0A4%20%26%20%5C%7B4%2C1%5C%7D%5E5%20%26%20%5C%7B4%2C2%5C%7D%5E6%20%26%20%5C%7B4%2C3%5C%7D%5E7%20%26%20%5C%7B4%2C4%5C%7D%5E8%20%26%20%5C%7B4%2C5%5C%7D%5E9%20%26%20%5C%7B4%2C6%5C%7D%5E%7B10%7D%20%5C%5C%20%0A%5Cend%7Btabular%7D%0A%5Cend%7Bcenter%7D)

From the table it can be seen that the sums: 2 and 12 appeared only once and hence will represent the shortest bars if the distribution is represented in a bar chart.
Therefore, the <span>two sums that are represented by the shortest bars on a bar graph of this distribution</span> are 2 and 12.