Answer:
Nuclear Chain Reactions. A chain reaction refers to a process in which neutrons released in fission produce an additional fission in at least one further nucleus. This nucleus in turn produces neutrons, and the process repeats. The process may be controlled (nuclear power) or uncontrolled (nuclear weapons).
Explanation:
Polymerization
For example:
nCH₂=CH₂ ---p,T,kat.----> -[-CH₂-CH₂-]- n
<h3><u>Answer; </u></h3>
=10.38 moles KOH
<h3><u>Explanation</u>;</h3>
The balanced equation.
6KOH + Al2(SO4)3 --> 3K2SO4 + 2Al(OH)3
From the equation;
1 mole of aluminum sulfate requires 6 moles of potassium hydroxide.
Moles of Aluminium sulfate; 1.73 moles
Moles of KOH;
1 mol Al2(SO4)3 : 6 mol KOH = 1.73 mol Al2(SO4)3 : x mol KOH
Thus; x = (6 × 1.73)
<u> =10.38 moles KOH </u>
Answer:
Volume of container = 0.0012 m³ or 1.2 L or 1200 ml
Explanation:
Volume of butane = 5.0 ml
density = 0.60 g/ml
Room temperature (T) = 293.15 K
Normal pressure (P) = 1 atm = 101,325 pa
Ideal gas constant (R) = 8.3145 J/mole.K)
volume of container V = ?
Solution
To find out the volume of container we use ideal gas equation
PV = nRT
P = pressure
V = volume
n = number of moles
R = gas constant
T = temperature
First we find out number of moles
<em>As Mass = density × volume</em>
mass of butane = 0.60 g/ml ×5.0 ml
mass of butane = 3 g
now find out number of moles (n)
n = mass / molar mass
n = 3 g / 58.12 g/mol
n = 0.05 mol
Now put all values in ideal gas equation
<em>PV = nRt</em>
<em>V = nRT/P</em>
V = (0.05 mol × 8.3145 J/mol.K × 293.15 K) ÷ 101,325 pa
V = 121.87 ÷ 101,325 pa
V = 0.0012 m³ OR 1.2 L OR 1200 ml
Election current because voltage is a measurement, information doesn't apply to all electrical devices and the wires within are usually copper bc it conducts and hardly ever will the wires be anything different because copper is cheap