Answer:
C. 1.3 mol
Explanation:
PV = nRT
where P is absolute pressure,
V is volume,
n is number of moles,
R is universal gas constant,
and T is absolute temperature.
Given:
P = 121.59 kPa
V = 31 L
T = 360 K
R = 8.3145 L kPa / mol / K
Find: n
n = PV / (RT)
n = (121.59 kPa × 31 L) / (8.3145 L kPa / mol / K × 360 K)
n = (3769.29 L kPa) / (2993.22 L kPa / mol)
n = 1.26 mol
Round to two significant figures, there are 1.3 moles of gas.
Answer:
Explanation:
Increasing Volume while maintaining constant pressure requires a proportional increase in Temperature so the gas pressure will be maintained as constant.
Consider...
V₁ = V₁ V₂ = 4V₁
T₁ = T₁ T₂ = ?
Charles Law => T ∝ V at constant P ... that is, increasing temperature generates a proportional increase in volume to maintain constant pressure.
Empirical Charles Law Relation is ...
V₁/T₁ = V₂/T₂ => T₂ = T₁(V₂/V₁) = T₁(4V₁/V₁) = 4T₁
Increasing Volume of a gas by 4 times requires a 4 times increase in absolute temperature in order to maintain constant pressure.
Explanation:
1
Number of nucleon =
Molarmassofnucleon
Massofatom
=
1.6726×10
−24
g/nucleon
3.32×10
−23
g
=19.8=20(approximately)
It is given that element comprises of 2 atoms
Hence,number of nucleon = 2×20=40
2
You have 4.70 mol H2O
There are two H atoms in 1 molecule H2O.
Therefore, there must be 2*4.70 = 9.40 mols H in 4.70 mols H2O.
How many mols O in 4.70 mols H2O? That's 4.70 mols, of course.
Said another way, you have 2 mols H for every 1 mol H2O and 1 mol O for every 1 mol H2O.
So for 50 mols H2O you have 100 mols H and 50 mol O.
PLEASE GIVE ME A PIC FOR THIS ANSWER
A is true of UV rays.
B is true not of UV rays but rather of visible light.
C is true not of UV rays but rather of microwaves. (unless you actually toast your toast in a toaster like a normal person)
D is true not of UV rays but rather of radio waves.