1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dvinal [7]
3 years ago
14

A marble is dropped from rest and falls for 2.3 seconds. Find its final velocity.

Physics
1 answer:
juin [17]3 years ago
4 0

Answer:

23 m/s downward

__________________________________________________________

<em>Taking the downward direction as positive</em>

<u>We are given:</u>

Initial velocity of the marble (u) = 0 m/s

Time interval (t) = 2.3 seconds

Final velocity (v) = x m/s

<u>Solving for the Final velocity:</u>

<u>Acceleration of the Marble:</u>

We know that gravity will make the marble accelerate at a constant acceleration of 10 m/s

<u>Final velocity:</u>

v = u + at                                              [First equation of motion]

x = 0 + (10)(2.3)                                    [replacing the given values]

x = 23 m/s

Hence, after 2.3 seconds, the marble will move at a velocity of 23 m/s in the downward direction

You might be interested in
There is given an ideal capacitor with two plates at a distance of 3 mm. The capacitor is connected to a voltage source with 12
Licemer1 [7]

The kinematic energy of the positive charge is 2 10⁻⁸ J

This electrostatics exercise must be done in parts, the first part: let's start by finding the charge of the capacitor, the capacitance is defined by

        C = \frac{Q}{\Delta V}

        C = ε₀ \frac{A}{d}

we solve for the charge (Q)

        \frac{Q}{\Delta V} = \epsilon_o \frac{A}{d}

indicates that for the initial point d₁ = 3 mm = 0.003 m and the voltage is DV₁ = 12

         Q = \epsilon_o \  \frac{A \ \Delta V_1 }{d_1}

Now the voltage source is disconnected so the charge remains constant across the ideal capacitor.

For the second part, the condenser is separated at d₂ = 5mm = 0.005 m

         Q = \epsilon_o \  \frac{A \ \Delta V_2 }{d_2}

we match the expressions of the charge and look for the voltage

          \frac{\Delta V_1}{d_1} = \frac{\Delta V_2}{d_2}

          ΔV₂ = \frac{d_2}{d_1 } \ \Delta V_1

The third part we use the concepts of conservation of energy

starting point. With the test load (q = 1 nC = 1 10⁻⁹ C) next to the left plate

          Em₀ = U = q DV₂

          Em₀ = q  \frac{d_2}{d_1 } \ \Delta V_1

           

final point. Proof load on the right plate

         Em_f = K

energy is conserved

         Em₀ = em_f

         q  \frac{d_2}{d_1 } \ \Delta V_1 = K

   

we calculate

         K = 1 10⁻⁹  12  \frac{0.005}{0.003}  

         K = 20 10⁻⁹ J

In this exercise, as the conditions at two different points of separation give, the area of ​​the condenser is not necessary and with conservation of energy we find the final kinetic energy of 2 10⁻⁸ J

3 0
3 years ago
Which graph would you use to show the percentage of cookies sold by each
tatuchka [14]

Answer:

You would use a bar graph

4 0
3 years ago
Jill applies a force of 250 N to a machine. The machine applies a force of 25 N to an object. What is the mechanical advantage o
Vinvika [58]

Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.

<h3>What is mechanical advantage?</h3>

Mechanical advantage is a measure of the ratio of output force to input force in a system,

It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.

The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.

Given

applied force = 250 N

Output force = 25

Mechanical advantage = work output / work input

\rm{Mechanical advantage}=\frac{F_O}{F_I}

\rm{Mechanical advantage}=\frac{25}{250}

\rm{Mechanical advantage}=0.1

Hence the mechanical advantage of the machine will be 0.1

To learn more about the mechanical advantage refer to the link;

brainly.com/question/7638820

3 0
2 years ago
Volcanoes that have fast flowing liquid lava will be narrow like a river
vodomira [7]

Answer:

Shield volcanoes, the third type of volcano, are built almost entirely of fluid lava flows. Flow after flow pours out in all directions from a central summit vent, or group of vents, building a broad, gently sloping cone of flat, domical shape, with a profile much like that of a warrior's shield.

Explanation:

8 0
3 years ago
A diver 40 m deep in 10 degrees C fresh water exhales a 1.5 cm diameter bubble.
zzz [600]

Answer:

0.0257259766982 m

Explanation:

P_2 = Atmospheric pressure = 101325 Pa

d_1 = Initial diameter = 1.5 cm

d_2 = Final diameter

\rho = Density of water = 1000 kg/m³

h = Depth = 40 m

The pressure is

P_1=P_2+\rho gh\\\Rightarrow P_1=101325+1000\times 9.81\times 40\\\Rightarrow P_1=493725\ Pa

From ideal gas law we have

\dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}\\\Rightarrow \dfrac{P_1\dfrac{4}{3\times8}\pi d_1^3}{T_1}=\dfrac{P_2\dfrac{4}{3\times8}\pi d_2^3}{T_2}\\\Rightarrow \dfrac{P_1d_1^3}{T_1}=\dfrac{P_2d_2^3}{T_2}\\\Rightarrow d_2=(\dfrac{P_1d_1^3T_2}{P_2T_1})^{\dfrac{1}{3}}\\\Rightarrow d_2=(\dfrac{493725\times 0.015^3\times (20+273.15)}{101325\times (10+273.15)})^{\dfrac{1}{3}}\\\Rightarrow d_2=0.0257259766982\ m

The diameter of the bubble is 0.0257259766982 m

8 0
3 years ago
Other questions:
  • Horatio used the flat end of a hammer to remove a nail from a piece of wood.
    14·2 answers
  • 1) Rephrase the objective. (limit 2 sentences). Give a brief explanation of the concepts of linear motion, its characteristics a
    10·2 answers
  • What is the most common consumed Halloween candy in the us after chocolate
    14·1 answer
  • A bus starting from rest moves with a uniform acceleration of 0.1 ms ^-2 for 2 minutes.Find the speed acquired then find the dis
    8·1 answer
  • When a substance goes directly from a gaseous state to a solid state as dry ice does
    5·2 answers
  • For the circuit, suppose C=10µF, R1=1000Ω, R2=3000Ω, R3=4000Ω and ls=1mA. The switch closes at t=0s.1) What is the value of Vc (
    11·1 answer
  • Please help no trolls no links
    12·2 answers
  • Sophia was studying with Maalik about the layers of the Earth. They were given several different statements about the layers. Wh
    12·2 answers
  • Determine the surface gravity of Earth. Its mass is 6.0 x 1024 kg and its radius is 6.4 x 106 m.
    6·1 answer
  • When you are making cold calls while job hunting, be
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!