Answer:
The right solution is:
(a) 2.87 eV
(b) 1.4375 eV
Explanation:
Given:
Wavelength,
= 433 nm
Potential difference,
= 1.43 V
Now,
(a)
The energy of photon will be:
E = 
= 
or,
= 
= 
(b)
As we know,
⇒ 
By substituting the values, we get
⇒ 
⇒ 
or,
⇒ 
⇒ 
Answer:
the hotter it gets, the liquid(mercury), expands more and more, and will rise up the tube to the correct line to read the tempature
Answer:
Distance, d = 778.05 m
Explanation:
Given that,
Force acting on the car, F = 981 N
Mass of the car, m = 1550 kg
Initial speed of the car, v = 25 mi/h = 11.17 m/s
We need to find the distance covered by car if the force continues to be applied to the car. Firstly, lets find the acceleration of the car:

Let d is the distance covered by car. Using second equation of motion as :

So, the car will cover a distance of 778.05 meters.
Answer:
539 kPa
Explanation:
Pressure equals density times acceleration of gravity times depth.
P = ρgh
Water has a density of 1000 kg/m³, and acceleration of gravity is 9.8 m/s².
P = (1000 kg/m³) (9.8 m/s²) (55.0 m)
P = 539,000 Pa
P = 539 kPa
Answer:
T1 = 130N, T2 = 370N
Explanation:
In order for the system to be at rest, the sum of all forces must be zero and the torque around a point on the beam must be zero.
1. forces:
Let tension in rope 1 be T1 and in rope 2 be T2:
ma = T1 + T2 - 100N - 400N = 0
(1) T1 + T2 = 500N
2. torque around the center point of the beam:
τ = r x F = 5*T1 + 3*400N - 5*T2 = 0
(2) T1 - T2 = -240N
Solving both equations:
T1 = 130N
T2 = 370N