1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
3 years ago
13

A Boeing 787 is initially moving down the runway at 6.0 m/s preparing for takeoff. The pilot pulls on the throttle so that the e

ngines give the plane a constant acceleration of 1.9 m/s2. The plane then travels a distance of 1700 m down the runway before lifting off. How long does it take from the application of the acceleration until the plane lifts off, becoming airborne
Physics
1 answer:
andrey2020 [161]3 years ago
3 0

Answer:

39.26 s

Explanation:

From the question given above, the following data were obtainedb

Initial velocity (u) = 6 m/s

Acceleration (a) = 1.9 m/s²

Distance travelled (s) = 1700 m

Time (t) =?

Next, we shall determine the final velocity of the plane. This can be obtained as follow:

Initial velocity (u) = 6 m/s

Acceleration (a) = 1.9 m/s²

Distance travelled (s) = 1700 m

Final velocity (v) =?

v² = u² + 2as

v² = 6² + (2 × 1.9 × 1700)

v² = 36 + 6460

v² = 6496

Take the square root of both side

v = √6496

v = 80.6 m/s

Finally, we shall determine the time taken before the plane lifts off. This can be obtained as follow:

Initial velocity (u) = 6 m/s

Acceleration (a) = 1.9 m/s²

Final velocity (v) = 80.6 m/s

Time (t) =?

v = u + at

80.6 = 6 + 1.9t

Collect like terms

80.6 – 6 = 1.9t

74.6 = 1.9t

Divide both side by 1.9

t = 74.6 / 1.9

t = 39.26 s

This, it will take 39.26 s before the plane lifts off.

You might be interested in
Carbon and hydrogen are examples of pure substances or
Ede4ka [16]
The are elements on the periodic table
7 0
3 years ago
Read 2 more answers
The human ear canal is about 2.3 cm long. If it is regarded as a tube open at one end and closed at the eardrum, what is the fun
mariarad [96]

Answer:

For the given conditions the fundamental frequency is 3728.26 Hertz

Explanation:

We know that for a pipe open at one end and closed at other end the fundamental frequency is given by

f=\frac{V_{s}}{4L}

where

f is the fundamental frequency

V_{s} is the speed of sound in air in the surrounding conditions.

L = Length of the pipe

Applying values we get and using speed of sound as 343m/s we get

f=\frac{343}{4\times 2.3\times 10^{-2}}=3728.26Hz

7 0
3 years ago
4. What does doubling the voltage do to the strength of the electromagnet?​
Naya [18.7K]

Answer:

it can make it stronger!

5 0
3 years ago
Read 2 more answers
Engineers and science fiction writers have proposed designing space stations in the shape of a rotating wheel or ring, which wou
Gennadij [26K]

Answer:

a. The station is rotating at 1.496 \frac{rev}{min}

b. the rotation needed is 2.8502 \frac{rev}{min}

Explanation:

We know that the centripetal acceleration is

a_{c}= \omega ^2 r

where \omega is the rotational speed and r is the radius. As the centripetal acceleration is feel like an centrifugal acceleration in the rotating frame of reference (be careful, as the rotating frame of reference is <u>NOT INERTIAL,</u> the centrifugal force is a fictitious force, the real force is the centripetal).

<h3>a. </h3>

The rotational speed  is :

2.7 \frac{m}{s^2} = \omega ^2 * 110  \ m

\omega ^2 = \frac{2.7 \frac{m}{s^2}} {110 \ m}

\omega  = \sqrt{ 0.02454 \frac{rad^2}{s^2} }

\omega  = 0.1567 \frac{rad}{s}

Knowing that there are 2\pi \ rad in a revolution and 60 seconds in a minute.

\omega  = 0.1567 \frac{rad}{s}  \frac{1 \ rev}{2\pi \ rad} \frac{60 \ s}{1 \ min}

\omega  = 1.496 \frac{rev}{min}

<h3>b. </h3>

The rotational speed needed is :

9.8 \frac{m}{s^2} = \omega ^2 * 110  \ m

\omega ^2 = \frac{9.8 \frac{m}{s^2}} {110 \ m}

\omega  = \sqrt{ 0.08909 \frac{rad^2}{s^2} }

\omega  = 0.2985 \frac{rad}{s}

Knowing that there are 2\pi \ rad in a revolution and 60 seconds in a minute.

\omega  = 0.2985 \frac{rev}{min}  \frac{1 \ rev}{2\pi \ rad} \frac{60 \ s}{1 \ min}

\omega  = 2.8502 \frac{rev}{min}

3 0
3 years ago
Read 2 more answers
Steel blocks A and B, which have equal masses, are at TA = 300 oC and T8 = 400 oC. Block C, with mc - 2mA, is at TC = 350 oC. Bl
shepuryov [24]

Answer:

b) TA = TB = TC

Explanation:

  • When put in contact each other, and isolated, both blocks will exchange heat till they reach to thermal equilibrium.
  • During this process, the body at a higher temperature, will loss heat, tat it will be gained by the other body.
  • The equilibrium condition will be reached when the following equation be met:

       \Delta Q = c_{st}* m_{A} * (T_{fin}  - T_{0A} ) = c_{st}* m_{B} * (T_{0B}  - T_{fin} )

  • Replacing by the values of T₀A = 300º C, and T₀B = 400ºC, and simplifying common terms as mA = mB, we can solve for  Tfin, as follows:

       (400 \ºC - T_{fin}) = (T_{fin} - 300 \ºC) \\ \\  2* T_{fin} = 700\ºC\\ \\ T_{fin} = 350\ºC

  • So, when both blocks reach to equilibrium, they will be at a common final temperature, 350ºC.
  • When put in contact with block C, at the same temperature, at that instant, the three blocks will have the same common temperature of 350 ºC.
  • So, option b) is the right one.
8 0
3 years ago
Other questions:
  • Two charged particles move in the same direction with respect to the same magnetic field. particle 1 travels two times faster th
    7·1 answer
  • Which of the following represents the wavelength of a wave?<br> A <br> B <br> C <br> D
    10·1 answer
  • All charged objects create an electric field around them. What two factors determine the strength of two electric fields upon th
    7·1 answer
  • Which of the following is not one of the emotional expressions that are universally recognized?
    10·2 answers
  • Compared to a cold object, a hotter object of the same size emits most of its light at __________ wavelengths and emits _____ li
    15·1 answer
  • A particle hangs from a spring and oscillates with a period of 0.2s.If the mass-spring system remained at rest, by how much woul
    13·2 answers
  • A golf ball rolls off a horizontal cliff with an initial speed of 11.4 m/s. The ball falls a vertical distance of 17.7 m into a
    6·1 answer
  • Terra tosses a 0.20 kg volleyball straight up at 10.0 m/s. how high does it go?
    5·1 answer
  • What variable(s) determine the amount of potential energy an object has?
    13·1 answer
  • 65. If Jill was traveling at 300 miles in 4 hours due South what was his velocity in miles per second,
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!