Answer:
W = -0.480 J
Explanation:
given,
q₁ = 4 μC
q₂ = -4.10 μC


b = 0.381
k = 8.99 × 10⁹ Nm²/C²

![W = [-147.436\times (5.88-2.62)\times 10^{-3}]J](https://tex.z-dn.net/?f=W%20%3D%20%5B-147.436%5Ctimes%20%285.88-2.62%29%5Ctimes%2010%5E%7B-3%7D%5DJ)
W = -0.480 J
Work done by the electric force W = -0.480 J
Answer:
a_total = 2 √ (α² + w⁴)
, a_total = 2,236 m
Explanation:
The total acceleration of a body, if we use the Pythagorean theorem is
a_total² = a_T²2 +
²
where
the centripetal acceleration is
a_{c} = v² / r = w r²
tangential acceleration
a_T = dv / dt
angular and linear acceleration are related
a_T = α r
we substitute in the first equation
a_total = √ [(α r)² + (w r² )²]
a_total = 2 √ (α² + w⁴)
Let's find the angular velocity for t = 2 s if we start from rest wo = 0
w = w₀ + α t
w = 0 + 1.0 2
w = 2.0rad / s
we substitute
a_total = r √(1² + 2²) = r √5
a_total = r 2,236
In order to finish the calculation we need the radius to point A, suppose that this point is at a distance of r = 1 m
a_total = 2,236 m
Answer:
(a) gravitational potential energy converted to kinetic energy
(b) chemical energy is converted to light or heat energy
(c) mechanical energy is converted into kinetic energy
The image distance can be determined using the mirror equation: 1/f = 1/d_o + 1/d_i, where, f is the focal length, d_o is the object distance, and d_i is the image distance. Given that f = 28.2 and d_o = 33.2 cm, the value of d_i is calculated to be 187.248 cm. On the other hand, the image height is obtained using the magnification equation wherein, h_i/h_o = -d_i/d_o, where h_i is the image height and h_o is the object height. Using the given values, h_i is equal to -26.79 cm. Note that the negative sign indicates that the image is inverted.
Answer: C
Explanation: weak nuclear