Answer:
a) the values of the angle α is 45.5°
b) the required magnitude of the vertical force, F is 41 lb
Explanation:
Applying the free equilibrium equation along x-direction
from the diagram
we say
∑Fₓ = 0
Pcosα - 425cos30° = 0
525cosα - 368.06 = 0
cosα = 368.06/525
cosα = 0.701
α = cos⁻¹ (0.701)
α = 45.5°
Also Applying the force equation of motion along y-direction
∑Fₓ = ma
Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)
525sin45.5° + F + 212.5 - 600 = 27.95
374.46 + F + 212.5 - 600 = 27.95
F - 13.04 = 27.95
F = 27.95 + 13.04
F = 40.99 ≈ 41 lb
Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s
Answer:
The units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Explanation:
P² = a³ is the simplified version of Kepler's third law which governs the orbital motion of large bodies that orbit around a star. The orbit of each planet is an ellipse with the star at the focal point.
Therefore, if you square the year of each planet and divide it by the distance that it is from the star, you will get the same number for all the other planets.
Thus, the units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.