We're happy that you're asking for the "displacement", because displacement is simply the straight-line distance between the start-point and end-point, and we don't care about any of the motions or gyrations along the way.
From the graph:
-- The location of the object at time-zero, when time begins, is 10 meters.
-- The location of the object after 6.0 seconds is 4 meters.
-- The distance between the start-point and end-point is
(final location) - (initial location)
-- So Displacement = (4 meters) - (10 meters)
<em>Displacement = -6 meters</em>
The process you're fishing for is "polarization", but that's a
misleading description.
Polarization doesn't do anything to change the light waves.
It simply filters out (absorbs, as with a polarizing filter) the
light waves that aren't vibrating in the desired plane, and
allows only those that are to pass.
The intensity of a light beam is always reduced after
polarizing it, because much (most) of the original light
has been removed.
A laser light source may be thought of as an exception,
since everything coming out of the laser is polarized.
Answer: 1200 000 J = 1.2 MJ
Explanation: Ek = 0.5 mv² = 0.5 · 1500 kg· (40 m/s)²
Answer:


Explanation:
<u>Given:</u>
Mass = m = 200,000 kg
Vertical Distance = h = 120 m
Speed = v = 14 m/s
Acceleration due to gravity = g = 10 m/s²
<u>Required:</u>
1) Gravitational Potential Energy = P.E = ?
2) Kinetic Energy = K.E. = ?
<u>Formula:</u>
1) P.E. = mgh
2) K.E. = 
<u>Solution:</u>
1) P.E. = (200,000)(10)(120)
P.E. = 240,000,000 Joules
P.E. = 240 Mega Joules
P.E. = 240 MJ
2) K.E. = 1/2 (200000)(14)^2
K.E. = (100000)(196)
K.E. = 19,600,000 Joules
K.E. = 19.6 MJ
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer:
The largest equivalent resistance yu can build using these three resistors is a Serie Resistance with the value of R= 16.74 Ω
Explanation:
Adding Resistances in serie is the way to build de largest equivalent value possible.
Rt= R1+R2+R3
Rt= 6.32 + 8.13 + 2.29
Rt= 16.74Ω