
Explanation
the density of an object is given by:

Step 1
find the volume of the bar
a)find the volume of the rectangular bar.
the volume of a rectangular prism is given by:

replace

Step 2
now,
Let

replace in the formula

therefore, the answer is

I hope this helps you
Answer:
a) 7.35 x 10¹³ m/s²
b) 5.03 x 10⁻⁸ sec
c) 9.3 cm
d) 6.23 x 10⁻¹⁸ J
Explanation:
E = magnitude of electric field = 418 N/C
q = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
m = mass of the electron = 9.1 x 10⁻³¹ kg
a)
acceleration of the electron is given as


a = 7.35 x 10¹³ m/s²
b)
v = final velocity of the electron = 3.70 x 10⁶ m/s
v₀ = initial velocity of the electron = 0 m/s
t = time taken
Using the equation
v = v₀ + at
3.70 x 10⁶ = 0 + (7.35 x 10¹³) t
t = 5.03 x 10⁻⁸ sec
c)
d = distance traveled by the electron
using the equation
d = v₀ t + (0.5) at²
d = (0) (5.03 x 10⁻⁸) + (0.5) (7.35 x 10¹³) (5.03 x 10⁻⁸)²
d = 0.093 m
d = 9.3 cm
d)
Kinetic energy of the electron is given as
KE = (0.5) m v²
KE = (0.5) (9.1 x 10⁻³¹) (3.70 x 10⁶)²
KE = 6.23 x 10⁻¹⁸ J
Answer:
0.9m/s^2 (yours is 0.87, so choose that)
Explanation:
formula for centripetal acceleration:
v^2/r
to find v, we know that f=1/90s, and r=180m.
v=(2pir)/T
v=(2pi(180))/90
v=12.6m/s
now plug into a=v^2/r
a=(12.6)^2/180
a=0.9m/s^2
The gravitational potential energy U is defined as the product of mass m, the acceleration of gravity g and the height of object h.

We do not have the mass of the hiker. But we know that its W weight is:

Where

So:
.
So:

J
The hiker has gained 30,000 J of energy
<h3>
Answer: A voltmeter is connected in parallel with a device to measure its voltage, while an ammeter is connected in series</h3>
Explanation: okay for question B its