Technically friction is acting on the car because it is still rubbing against the street and gravity is pulling the car down preventing it from floating??? lol
Answer:
position as a function of time is y = 0.05 × cos(9.9)t
Explanation:
given data
mass = 5 kg
length = 10 cm = 0.1 m
displaced = 5 cm
to find out
position as a function of time
solution
we will apply here equilibrium that is
mass × g = k × length
put here value and find k
k = 
k = 490 N/m
and ω is
ω = 
ω = 
ω = 9.9
so here position w.r.t time is
y = 0.05 × cosωt
y = 0.05 × cos(9.9)t
so position as a function of time is y = 0.05 × cos(9.9)t
Answer:Net Force is zero
Explanation:
Given
Car is moving to the left with constant velocity i.e. net force on the car is zero
because change in velocity with respect to time is acceleration thus force is also zero because net acceleration is zero
Mathematically
acceleration
as velocity is constant therefore 
thus a=0 , F=0
Answer:
A) 15.0 years
Explanation:
Due to the distance to the star system is in light-year units, we can compute the time by using:

then, Rob will take to complete the trip about 15 light-years.
hope this helps!!
Answer:
The length of the rod for the condition on the question to be met is 
Explanation:
The Diagram for this question is gotten from the first uploaded image
From the question we are told that
The mass of the rod is 
The mass of each small bodies is 
The moment of inertia of the three-body system with respect to the described axis is 
The length of the rod is L
Generally the moment of inertia of this three-body system with respect to the described axis can be mathematically represented as

Where
is the moment of inertia of the rod about the describe axis which is mathematically represented as

And
the moment of inertia of the two small bodies which (from the diagram can be assumed as two small spheres) can be mathematically represented as
![I_m = m * [\frac{L} {2} ]^2 = m* \frac{L^2}{4}](https://tex.z-dn.net/?f=I_m%20%20%3D%20%20%20m%20%2A%20%5B%5Cfrac%7BL%7D%20%7B2%7D%20%5D%5E2%20%3D%20%20m%2A%20%20%5Cfrac%7BL%5E2%7D%7B4%7D)
Thus 
Hence

=> ![I = [\frac{M}{12} + \frac{m}{2}] L^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20%20%20%5B%5Cfrac%7BM%7D%7B12%7D%20%20%2B%20%5Cfrac%7Bm%7D%7B2%7D%5D%20L%5E2)
substituting vales we have
![0.929 = [\frac{3.41}{12} + \frac{0.249}{2}] L^2](https://tex.z-dn.net/?f=0.929%20%20%20%3D%20%20%20%20%5B%5Cfrac%7B3.41%7D%7B12%7D%20%20%2B%20%5Cfrac%7B0.249%7D%7B2%7D%5D%20L%5E2)

