Basically when frozen water/ice crystals high in the atmosphere collect water vapor molecules they grow. They are sometimes supplied by microscopic cloud droplets.
X

H has a positive 1 charge. This means that having 3H = +3<span>. This is a neutral compound so x= -3 because X+3H= 0
Y</span>

is also neutral so 2X+Y= 0
we know X=-3 So, 2(-3)+Y=0
-6+y=0
Y=+6 charge
Answer: The valency of X is -3.
The valency of Y is 6
According to law of definite proportion, for a compound, elements always combine in fixed ratio by mass.
The formula of compound remains the same, let it be a_{x}b_{y} where, a and b are two different elements.
Since, the ratio of mass remains the same , calculate the ratio of masses of element a and b in both cases
\frac{a}{b}=\frac{15}{35}=\frac{10}{y}
rearranging,
y=\frac{10\times 35}{15}=23.3
Thus, mass of b produced will be 23.3 g.
Explanation:
when an iron bar rust is an example of a chemical change in which a new substance is formed and the change is not easily reversible.for iron to rust moisture and air must be present.while when a substance freezes,it can be easily reversed through melting and no new substance is formed.this change is termed a physical change.
Answer:
The reaction can produce 287 grams of iron(II) carbonate
Explanation:
To solve this question we must find the moles of iron(II) chloride that react. Using the chemical equation we can find the moles of iron(II) carbonate and its mass -Molar mass FeCO3: 115.854g/mol-
<em>Moles FeCl2:</em>
1.24L * (2.00mol / L) = 2.48 moles FeCl2
As 1 mol FeCl2 produce 1 mol FeCO3, the moles of FeCO3 = 2.48 moles
<em>Mass FeCO3:</em>
2.48mol * (115.854g / mol) =
<h3>The reaction can produce 287 grams of iron(II) carbonate</h3>