C equals 17.5 you have to cross multiply to find what c is equal to
Step-by-step explanation:
Let x represent theta.

Using the angle addition trig formula,



Multiply one side at a time
Replace theta with x , the answer is

2. Convert 30 degrees into radian

Using tangent formula,


Tan if pi/6 is sqr root of 3/3

Since my phone about to die if you later simplify that,
you'll get

Replace theta with X.
Answer:
Step-by-step explanation:
We want to determine a 90% confidence interval for the true population mean textbook weight.
Number of sample, n = 22
Mean, u = 64 ounces
Standard deviation, s = 5.1 ounces
For a confidence level of 90%, the corresponding z value is 1.645. This is determined from the normal distribution table.
We will apply the formula
Confidence interval
= mean ± z ×standard deviation/√n
It becomes
64 ± 1.645 × 5.1/√22
= 64 ± 1.645 × 1.087
= 64 ± 1.788
The lower end of the confidence interval is 64 - 1.788 = 62.21 ounces
The upper end of the confidence interval is 64 + 1.788 = 65.79 ounces
Therefore, with 90% confidence interval, the true population mean textbook weight is between 62.21 ounces and 65.79 ounces
Substitute

, so that

![\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1x\dfrac{\mathrm dy}{\mathrm dz}\right]=-\dfrac1{x^2}\dfrac{\mathrm dy}{\mathrm dz}+\dfrac1x\left(\dfrac1x\dfrac{\mathrm d^2y}{\mathrm dz^2}\right)=\dfrac1{x^2}\left(\dfrac{\mathrm d^2y}{\mathrm dz^2}-\dfrac{\mathrm dy}{\mathrm dz}\right)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%5Cright%5D%3D-%5Cdfrac1%7Bx%5E2%7D%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%2B%5Cdfrac1x%5Cleft%28%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dz%5E2%7D%5Cright%29%3D%5Cdfrac1%7Bx%5E2%7D%5Cleft%28%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dz%5E2%7D-%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%5Cright%29)
Then the ODE becomes


which has the characteristic equation

with roots at

. This means the characteristic solution for

is

and in terms of

, this is

From the given initial conditions, we find


so the particular solution to the IVP is
Lets start of with what we know.
• There are two 27 degree angles 27 + 27 = 52 is the sum of the angles.
•There are 360 degrees all around the intersection
So, we can find out the sum of the 2 angles that are unknown by subtracting.
360-52=308
So, if the sum of the unknown 2 angles are 308, we can divide by 2 to find the measure of the unknown angles.
308/2=154