Answer:
1. coordinate plane
2. ordered pair
3. quadrant
4. origin
5. X-axis
6. Y-axis
7. coordinates
8. X-intercept
9. Y-intercept
Step-by-step explanation:
NOT MY WORDS TAKEN FROM A SOURCE!
(x^2) <64 => (x^2) -64 < 64-64 => (x^2) - 64 < 0 64= 8^2 so (x^2) - (8^2) < 0 To solve the inequality we first find the roots (values of x that make (x^2) - (8^2) = 0 ) Note that if we can express (x^2) - (y^2) as (x-y)* (x+y) You can work backwards and verify this is true. so let's set (x^2) - (8^2) equal to zero to find the roots: (x^2) - (8^2) = 0 => (x-8)*(x+8) = 0 if x-8 = 0 => x=8 and if x+8 = 0 => x=-8 So x= +/-8 are the roots of x^2) - (8^2)Now you need to pick any x values less than -8 (the smaller root) , one x value between -8 and +8 (the two roots), and one x value greater than 8 (the greater root) and see if the sign is positive or negative. 1) Let's pick -10 (which is smaller than -8). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive
2) Let's pick 0 (which is greater than -8, larger than 8). If x=0, then (x^2) - (8^2) = 0-64 = -64 <0 so it is negative3) Let's pick +10 (which is greater than 10). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive Since we are interested in (x^2) - 64 < 0, then x should be between -8 and positive 8. So -8<x<8 Note: If you choose any number outside this range for x, and square it it will be greater than 64 and so it is not valid.
Hope this helped!
:)
Answer:
The area of parallelogram ABCD is
Explanation:
Given:
AD = 12 in


To Find:
The area of parallelogram ABCD=?
Solution:
When we construct the parallelogram with the given data, we get a parallelogram formed by 12 cm as one side and an angle with 46 degrees.
The area of the parallelogram can be calculated by 
Substituting the value of a=12 we have

<u>To find the value of b,
</u>
We know that area of a triangle can be expressed as,

So,

Cancelling BD and 2 on both sides we get,


Therefore,

Substituting the value of b,

=78.42
So the area of the parallelogram is
18/6 = 3/1 = 6/2 = 9/3
5/45 = 1/9 = 2/18 = 3/27
3/5 = 6/10 = 9/15 = 12/20
Answer:
10.9361
Step-by-step explanation:
The lower control limit for xbar chart is
xdoublebar-A2(Rbar)
We are given that A2=0.308.
xdoublebar=sumxbar/k
Rbar=sumR/k
xbar R
5.8 0.42
6.1 0.38
16.02 0.08
15.95 0.15
16.12 0.42
6.18 0.23
5.87 0.36
16.2 0.4
Xdoublebar=(5.8+6.1+16.02+15.95+16.12+6.18+5.87+16.2)/8
Xdoublebar=88.24/8
Xdoublebar=11.03
Rbar=(0.42+0.38+0.08+0.15+0.42+0.23+0.36+0.4)/8
Rbar=2.44/8
Rbar=0.305
The lower control limit for the x-bar chart is
LCL=xdoublebar-A2(Rbar)
LCL=11.03-0.308*0.305
LCL=11.03-0.0939
LCL=10.9361