As the building blocks of proteins , amino acids are linked to almost every life process, but they also have key roles as precursor compounds in many physiological processes.
Answer:
A common characteristic of most Alkali Metals is their ability to displace H2(g) from water. This is represented by their large, negative electrode potentials. In this event, the Group 1 metal is oxidized to its metal ion and water is reduced to form hydrogen gas and hydroxide ions. The general reaction of an alkali metal (M) with H2O (l) is given in the following equation:2M(s)+2H2O(l)⟶2M+(aq)+2OH−(aq)+H2(g)(1)
Explanation:
Reactions like this one absorb energy because the reactants have less potential energy than the products.
<h3>What is an Endothermic reaction?</h3>
This is the type of reaction in which the reactants absorb heat energy from the surroundings to form products.
This brings about a decrease in the temperature as a result of the reactants having less potential energy than the products thereby making option B the most appropriate choice.
Read more about Endothermic reaction here brainly.com/question/6506846
Answer:
Molarity = 0.95 mol/dm³
Explanation:
Given data:
Volume of H₂SO₄ = 15.8 cm³
Volume of NaOH = 20 cm³
Concentration of NaOH = 1.5 mol/dm³
Concentration of H₂SO₄ = ?
Solution:
Chemical equation:
NaOH + H₂SO₄ → Na₂SO₄ + H₂O
First of all we will calculate the number of moles of NaOH and for that we will convert the units first,
Volume = 20 cm³/1000 = 0.02 L
Concentration of NaOH = 1.5 mol/dm³
1 mol/dm³ = 1 mol/L
Concentration of NaOH = 1.5 mol/L
Number of moles of NaOH:
Molarity = number of moles / volume in L
1.5 M = number of moles / 0.02 L
Number of moles = 1.5 M ×0.02 L
Number of moles = 0.03 mol
Now we will compare the moles of NaOH and H₂SO₄
NaOH : H₂SO₄
2 : 1
0.03 : 1/2×0.03 = 0.015 mol
Concentration of H₂SO₄:
Volume of H₂SO₄:
15.8 cm³/1000 = 0.0158 L
Molarity = number of moles / volume in L
Molarity = 0.015 mol / 0.0158 L
Molarity = 0.95 mol/L
1 mol/L = 1 mol/dm³
Molarity = 0.95 mol/dm³