To get the value of ΔG we need to get first the value of ΔG°:
when ΔG° = - R*T*㏑K
when R is constant in KJ = 0.00831 KJ
T is the temperature in Kelvin = 25+273 = 298 K
and K is the equilibrium constant = 4.5 x 10^-4
so by substitution:
∴ ΔG° = - 0.00831 * 298 K * ㏑4.5 x 10^-4
= -19 KJ
then, we can now get the value of ΔG when:
ΔG = ΔG° - RT*㏑[HNO2]/[H+][NO2]
when ΔG° = -19 KJ
and R is constant in KJ = 0.00831
and T is the temperature in Kelvin = 298 K
and [HNO2] = 0.21 m & [H+] = 5.9 x 10^-2 & [NO2-] = 6.3 x 10^-4 m
so, by substitution:
ΔG = -19 KJ - 0.00831 * 298K* ㏑(0.21/5.9x10^-2*6.3 x10^-4 )
= -40
HELPPPPPPPPPPPPPPPPPPPPPPP HELPPPPPPPPPPPPPPPPPPPPPPP
Answer:12.5
Explanation: Divide 50$ by the 4 hours and you will get 12.5 which is $12.50.
Answer: C)The smaller the soil particles, the more water and air available for plant growth.
Explanation:
Answer:
1.0 x 10⁻⁸ M.
Explanation:
<em>∵ [H⁺][OH⁻] = 10⁻¹⁴.
</em>
∵ [H⁺] = 100 [OH⁻].
∴ 100 [OH⁻][OH⁻] = 10⁻¹⁴.
∴ 100 [OH⁻]² = 10⁻¹⁴.
[OH⁻]² = 10⁻¹⁴/ 100 = 1.0 x 10⁻¹⁶.
<em>∴ [OH⁻] = √(1.0 x 10⁻¹⁶) = 1.0 x 10⁻⁸ M.
</em>