1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gayaneshka [121]
3 years ago
15

8. A point of Charge +3.0 X 10^-7 Coulomb is placed 2.0 X 10^-2 from a second

Physics
1 answer:
Oksi-84 [34.3K]3 years ago
4 0
Use the formula F = (9x10^9 Q * q) / r^2
Message me if you need help.
You might be interested in
A woman 5.5 ft walks at a rate of 6 ft/sec towards a street light that is 22 ft above the ground. At what rate is the length of
Soloha48 [4]

Answer:

The length of her shadow is changing at the rate  -2 m/s

Explanation:

Let the height oh the street light, h = 22 ft

Let the height of the woman, w = 5.5 ft

Horizontal distance to the street light = l

length of shadow = x

h/w = (l + x)/x

22/5.5 =  (l + x)/x

4x = l + x

3x = l

x = 1/3 l

taking the derivative with respect to t of both sides

dx/dt = 1/3 dl/dt

dl/dt = -6 ft/sec ( since the woman is walking towards the street light, the value of l is decreasing with time)

dx/dt = 1/3 * (-6)

dx/dt = -2 m/s

7 0
3 years ago
Read 2 more answers
Onur drops a basketball from a height of 10m on Mars, where the acceleration due to gravity has a magnitude of 3.7m/s2.​ We want
lbvjy [14]

Explanation:

It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².

The second equation of kinematics gives the relationship between the height reached and time taken by it.

Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.

We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :

\Delta x=v_ot+\dfrac{1}{2}at^2

t is time taken by the ball to hit the ground

v_o is initial speed of the ball

So, the correct option is (A).

8 0
3 years ago
Suppose 3 mol of neon (an ideal monatomic gas) at STP are compressed slowly and isothermally to 0.19 the original volume. The ga
Radda [10]

Answer:

a. 273 K b. 90.1 K c. 5.26 atm d. 0.33 atm

Explanation:

For isothermal expansion PV = constant

So, P₁V₁ = P₂V₂ where P₁ = initial pressure of gas = 1 atm (standard pressure), V₁ = initial volume of gas, P₂ = final pressure of gas and V₂ = final volume of gas,

So, P₁V₁ = P₂V₂

P₂ = P₁V₁/V₂

Since V₂/V₁ = 0.19,

P₂ = P₁V₁/V₂

P₂ = 1 atm (1/0.19)  

P₂ = 5.26 atm

For an adiabatic expansion, PVⁿ = constant where n = ratio of molar heat capacities = 5/3 for monoatomic gas

So, P₂V₂ⁿ = P₃V₃ⁿ where P₂ = initial pressure of gas = 5.26 atm, V₂ = initial volume of gas, P₃ = final pressure of gas and V₃ = final volume of gas,

So, P₂V₂ⁿ = P₃V₃ⁿ

P₃ = P₂V₂ⁿ/V₃ⁿ

P₃ = P₂(V₂/V₃)ⁿ

Since V₃ = V₁ ,V₂/V₃ = V₂/V₁ = 0.19

1/0.19,

P₃ = P₂(V₂/V₃)ⁿ

P₃ = 5.26 atm (0.19)⁽⁵/³⁾

P₃ = 5.26 atm × 0.0628

P₃ = 0.33 atm

Using the ideal gas equation

P₃V₃/T₃ = P₄V₄/T₄ where P₃ = pressure after adiabatic expansion = 0.33 atm , V₃ = volume after adiabatic expansion, T₃ = temperature after adiabatic expansion  P₄ = initial pressure of gas = P₁ = 1 atm , V₄ = initial volume of gas = V₁ and T₄ = initial temperature of gas = T₁ = 273 K (standard temperature)

P₃V₃/T₃ = P₄V₄/T₄

T₃ = P₃V₃T₄/P₄V₄    

T₃ = (P₃/P₄)(V₃/V₄)T₂

Since V₃ = V₄ = V₁ and P₄ = P₁

V₃/V₄ = 1 and P₃/P₄ = P₃/P₁

T₃ = (P₃/P₁)(V₃/V₄)T₂

T₃ = (0.33 atm/1 atm)(1)273 K  

T₃ = 90.1 K

So,

a. The highest temperature attained by the gas is T₁ = 273 K

b. The lowest temperature attained by the gas = T₃ = 90.1 K

c. The highest pressure attained by the gas is P₂ = 5.26 atm

d. The lowest pressure attained by the gas is P₃ = 0.33 atm

6 0
3 years ago
A parallel-plate capacitor made of circular plates of radius 75 cm separated by 0.15 cm is charged to a potential difference of
ElenaW [278]

Answer:

See the attached pictures for detailed steps.

Explanation:

5 0
3 years ago
A 120 V fish-tank heater is rated at 130W. Calculate (a) the current through the heater when it is operating, and (b) its resist
7nadin3 [17]

Explanation:

The power P dissipated by a heater is defined as

P = VI

where V is the voltage and I is the current.

a) The current running through a 130-W heater is

I = \dfrac{P}{V} = \dfrac{130\:\text{W}}{120\:\text{V}} = 1.08\:\text{A}

b) The resistance <em>R</em><em> </em>of the heater is

P = VI = (IR)I = I^2R

where V= IR is our familiar Ohm's Law.

\Rightarrow R = \dfrac{P}{I^2} = \dfrac{130\:\text{W}}{(1.08\:\text{A})^2}

R = 110.8\:Ω

8 0
2 years ago
Other questions:
  • HELP!!!
    8·2 answers
  • How would water be different if it wasnt a polar molecule?
    14·1 answer
  • A car goes around in a circular curve on a horizontal road at constant speed. what is the direction of the friction force on the
    8·1 answer
  • If an object has a volume of 2.5mL and a mass of 10g than what is the density of an object?
    7·1 answer
  • At constant volume, the heat of combustion of a particular compound is − 3550.0 kJ / mol. When 1.075 g of this compound ( molar
    11·1 answer
  • The electrostatic force that describes why charged objects attract to one another is also called ________________.
    11·1 answer
  • What is the kinetic energy of a 150 kg bear running at 3 m/s?
    7·1 answer
  • At what height is an object that weighs 490 newtons if its gravitational potential energy is 4900 J?
    12·1 answer
  • What is the shape of a solid?
    10·1 answer
  • How can you drop two eggs the fewest amount of times, without them breaking?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!