<h2>
Answer: higher mean annual rainfall and temperatures. </h2>
Explanation:
Chemical weathering is the set of destructive processes through which rocky materials go trhough. These processes cause changes in the color, texture, composition, firmness and shape of the material.
It should be noted that this happens when the rocks come into contact with atmospheric agents such as oxygen and carbon dioxide.
Another important aspect is that rocks are able to break up more easily thanks to this type of weathering, since <u>the mineral grains within the rock lose adherence and dissolve better under the action of some physical agents</u>, such as <u>humidity (rainfall included) and temperature</u>.
Therefore:
Chemical weathering is greatest under conditions of <u>higher mean annual rainfall and temperatures. </u>
Answer:
Explanation:
We shall express each displacement vectorially , i for each unit displacement towards east , j for northward displacement and k for vertical displacement .
14 m due west = - 14 i
22.0 m upward in the elevator = 22 k
12 m north = 12 j
6.00 m east = 6 i
Total displacement = - 14 i + 22 k + 12 j + 6 i
D = - 8 i + 12 j + 22 k
magnitude = √ ( 8² + 12² + 22² )
= √ ( 64 + 144 + 484 )
= √ 692
= 26.3 m
Net displacement from starting point = 26.3 m .
Answer:
Explanation:
The resistors in a unbalanced wheat stone bridge cannot be treated as a combination of series and parallel combination of resistors.
In case of balanced wheat stone bridge, the resistors can be treated as the combination of series and parallel combination.
Here, In the balanced wheat stone bridge
R1 and R2 be in series and Ra and Rx is series and then their combination is in parallel combination.
Answer:
Given that
The earth spins on its axis once a day and orbits the sun once a year (365 1/4 days)
a)
When earth spins on its axis
We know that earth take 1 day to complete one revolution around its own axis.
T= 1 day = 24 hr = 24 x 3600 s
T=86400 s
We know that
T=2π/ω
ω= 2π/T
ω= 2π/86400
ω=7.27 x 10⁻5 rad/s
b)
When earth revolve around earth
T =365 1/4 days = 365.25 days
T= 365.24 x 86400 s
T=31557600
We know that
T=2π/ω
ω= 2π/T
ω= 2π/31557600
ω=1.99 x 10⁻⁷ rad/s
Answer:
c. 2.6 h
Explanation:
The longest time spent over dinner is the time that you have available minus the minimum possible time spent in the trip.
The time of the trip is found using:
t = 
Where distance is d and velocity is v. The time will be minimum at maximum velocity. Replacing with the data we have:
Ttrip =
= 8.1818 h
Tdinner = 10.8h - 8.1818 h = 2.6181h
that aproximates 2.6 h.