<span>0.52%
First, let's convert that speed into m/s.
150 km/h * 1000 m/km / 3600 s/h = 41.667 m/s
Now let's see how much time gravity has to work on the ball. Divide the distance by the speed.
18 m / 41.667 m/s = 0.431996544 s
Now multiply that time by the gravitational acceleration to see what the vertical component to the ball's speed that gravity adds.
0.431996544 s * 9.8 m/s^2 = 4.233566131 m/s
Use the pythagorean theorem to get the new velocity of the ball.
sqrt(41.667^2 + 4.234^2) = 41.882 m/s
Finally, let's see what the difference is
(41.882 - 41.667)/41.667 = 0.005159959 = 0.5159959%
Rounding to 2 figures, gives 0.52%</span>
We use the following expression
T = 2*pi *sqrt(l/g)
Where T is the period of the pendulum
l is the length of the pendulum
and g the acceleration of gravity
We solve for l
l = [T/2*pi]² *g = [30s/2*pi]²* 9.8 [m/s²] = 223.413 m
The tower would need to be at least 223.413 m high
Answer:
all of those are pisitions
Explanation:
Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^