This item is solved through the concept of the conservation of momentum which states that the momentum before and after collision should be equal.
momentum = mass x velocity
(1,600 kg)(16 m/s) + (1.0x10^3 kg)(10 m/s) = (1600 + 1000 kg)(x)
The value of x is 13.69 m/s. Thus, their final speed is approximately letter D. 14 m/s.
Protons and neutrons are located in the nucleus, a dense central core in the middle of the atom, while the electrons are located outside the nucleus.
Answer:
False
Explanation:
Actually, the converse is true. The mass number would be lower than the sum of the mass of the individual nucleons combined. According to Einstein’s equation of E=MC², this will be due to a phenomenon called mass defect. This ‘anomaly’ is due to the loss of some energy (now the nuclear binding energy) when the nucleons were brought in together to form the nucleus.
Answer:
B and D could both be right as they are quit similar.
Consider two rods of the same length and diameter,
Increasing the diameter of one would change the expansion qualities of that rod even though there would be no chemical changes,
However, leaving the physical appearance of both rods the same while applying a reactive substance (acid or something) to one of the rods would not necessarily change the physical appearance of that rod but could make a considerable change in the physical properties of that rod.