<span>An exothermic reaction is one in which heat is released from the reagents into the ambient environment. Perhaps somewhat counterintuitively, condensation is in fact an example of such a reaction. During the process of the gas-to-liquid phase change, water goes from a higher-energy to lower-energy state of matter, and, as such, releases heat into the environment.</span>
A, B and D should be the ones you should check
Explanation:
The graphite anodes are suspended into the brine. During electrolysis, Cl ions are oxidized at the anode and chlorine gas goes out of the cell, while sodium ions are reduced at the mercury cathode forming sodium amalgam. ... Hydrogen gas is obtained as a by–product at the cathode.
Answer: Option (A) is the correct answer.
Explanation:
A weak acid is defined as a substance which dissociates partially into a solvent. This also means that most of the molecules of a weak acid solution remain insoluble in nature.
A solution in which solute particles completely dissociate into ions in a solvent is known as a strong electrolyte.
Whereas a solution in which solute particles partially dissociate into ions is known as a weak electrolyte.
A molecular compound is a covalent compound and as like dissolves like. So, molecular compounds are not soluble in polar solvent like water.
Therefore, we can conclude that the true statement is weak acid solution consists of mostly insoluble acid molecules.
Answer:
0.2 M.
Explanation:
- For the acid-base neutralization, we have the role:
The no. of millimoles of acid is equal to that of the base at the neutralization.
<em>∴ (XMV) KOH = (XMV) H₂SO₄.</em>
X is the no. of reproducible H⁺ (for acid) or OH⁻ (for base),
M is the molarity.
V is the volume.
X = 1, M = 0.5 M, V = 38.74 mL.
X = 2, M = ??? M, V = 50.0 mL.
∴ M of H₂SO₄ = (XMV) KOH/(XV) H₂SO₄ = (1)(0.5 M)(38.74 mL)/(2)(50.0 mL) = 0.1937 M ≅ 0.2 M.