Wait… what do you need help with lol
Answer:
An atom of titanium has fewer protons than an atom of vanadium but more protons than an atom of scandium.
Explanation:
I was given this answer from the teacher
Answer:
The solution's new volume is 1.68 L
Explanation:
Dilution is the procedure to prepare a less concentrated solution from a more concentrated one, and simply consists of adding more solvent. So, in a dilution the amount of solute does not vary, but the volume of the solvent varies.
In summary, a dilution is a lower concentration solution than the original.
The way to do the calculations in a dilution is through the expression:
Ci*Vi=Cf*Vf
where C and V are concentration and volume, respectively; and the i and f subscripts indicate initial and final respectively.
In this case, being:
- Ci= 7 M
- Vi= 0.60 L
- Cf= 2.5 M
- Vf=?
Replacing:
7 M*0.60 L= 2.5 M* Vf
Solving:

Vf= 1.68 L
<u><em>The solution's new volume is 1.68 L</em></u>
An acid can be defined as a proton donor.
Answer:
CH₃CH(CH₃)CH(C₃H₇)CH₂CH(CH₃)₂:
4-isopropyl-2-methylpentane.
Explanation:
Step One: Draw the structure formula of this compound. Parentheses in the formula indicate substitute groups that are connected to the carbon atom to the left.
For example, the first (CH₃) indicates that the second carbon atom from the left is connected to:
- the CH₃- on the left-hand side,
- the -CH(C₃H₇)CH₂CH(CH₃)₂ on the right-hand side,
- a hydrogen atom, and
- an additional CH₃- group that replaced one hydrogen atom.
Each carbon atom in this compound is connected to four other atoms. All bonds between carbon atoms are single bonds.
The C₃H₇ in the second pair of parentheses is the condensed form of CH₃CH₂CH₂-. See the first sketch attached. Groups in parentheses are highlighted.
Step Two: Find the carbon backbone. The backbone of a hydrocarbon is the longest chain of carbon atoms that runs through the compound. See the second sketch attached. The backbone of this compound consists of seven carbon atoms and is highlighted in green. The name for this backbone shall be heptane.
Step Three: Identify and name the substitute groups.
The two substitute groups are circled in blue in the second sketch.
- The one on the right -CH₃ is a methyl group.
- The one on the left is branched.
This group can be formed by removing one hydrogen from the central carbon atom in propane. The name for this group is isopropyl.
Step Four: Number the atoms.
Isopropyl shall be placed before methyl. Start from the right end to minimize the index number on all substitute groups. The methyl group is on carbon number two and the isopropyl group on carbon number four. Hence the name:
4-isopropyl-2-methylheptane.