1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
15

Combustion vapor-air mixtures are flammable over a limited range of concentrations. The minimum volume % of vapor that gives a c

ombustible mixture is called the lower flammability limit(LFL). Generally, the LFL is about half the stoichiometric mixture, the concentration required to complete combustion of the vapor in air. a) If oxygen is 20.9 vol % of air, estimate the LFL for n-hexane, C6H14. b) What volume of C6H14(d=.660g/cm^3) is required to produce a flammable mixture of hexane in 1.000m^3 of air STP?
Chemistry
2 answers:
Margaret [11]3 years ago
8 0

(a) The LFL for n-hexane is   \boxed{1.1\;\% }

(b) \boxed{{\text{0}}{\text{.011 }}{{\text{m}}^{\text{3}}}} of n-hexane is required to produce its own flammable mixture in {\text{1 }}{{\text{m}}^{\text{3}}}  of air.

Further explanation:

Stoichiometry of a reaction is used to determine the amount of species present in reaction by the relationship between reactants and products. It is used to determine moles of a chemical species when moles of other chemical species present in reaction is given.

Consider the general reaction,

{\text{A}}+2{\text{B}}\to3{\text{C}}

Here,

A and B are reactants.

C is the product.

One mole of A reacts with two moles of B to produce three moles of C. The stoichiometric ratio between A and B is 1:2, the stoichiometric ratio between A and C is 1:3, and the stoichiometric ratio between B and C is 2:3.

Combustion reactions:

These are the reactions that take place when hydrocarbons are burnt in the presence of oxygen to form carbon dioxide and water. These are also referred to as burning.

Example of combustion reactions are as follows:

(a)   {\text{C}}{{\text{H}}_4}+{{\text{O}}_2}\to{\text{C}}{{\text{O}}_2}+{{\text{H}}_2}{\text{O}}

(b) {{\text{C}}_{10}}{{\text{H}}_{14}}+12{{\text{O}}_2}\to10{\text{C}}{{\text{O}}_2}+4{{\text{H}}_2}{\text{O}}

Lower Flammability Limit:

It is the minimum volume % of vapor that produces a combustible mixture. It is usually half the stoichiometric mixture concentration that is required for complete combustion of vapor in the air. It is written as LFL.

(a) The balanced chemical equation for combustion of n-hexane is as follows:

{\text{2}}{{\text{C}}_6}{{\text{H}}_{14}}+19{{\text{O}}_2}\to12{\text{C}}{{\text{O}}_2}+14{{\text{H}}_{\text{2}}}{\text{O}}

From the balanced chemical reaction, the reaction stoichiometry between {{\text{C}}_6}{{\text{H}}_{14}}  and {{\text{O}}_2} is as follows:

2{\text{ mol }}{{\text{C}}_6}{{\text{H}}_{14}}:19{\text{ mol }}{{\text{O}}_2}

Consider 100 moles of air. The moles of oxygen can be calculated as follows;

{\text{Moles of }}{{\text{O}}_{\text{2}}}=\left({\frac{{{\text{Volume\%  of }}{{\text{O}}_{\text{2}}}}}{{{\text{100\%}}}}}\right)\left({{\text{Moles of air}}}\right)                   …… (1)

The volume % of {{\text{O}}_2}  is 20.9 %.

The moles of air are 100 mol.

Substitute these values in equation (1).

\begin{aligned}{\text{Moles of }}{{\text{O}}_{\text{2}}}&=\left({\frac{{{\text{20}}{\text{.9\%}}}}{{{\text{100 \% }}}}}\right)\left({{\text{100 mol}}}\right)\\&={\text{20}}{\text{.9 mol}}\\\end{aligned}

19 moles of {{\text{O}}_2}  require 2 moles of n-hexane. So the amount of n-hexane required for 20.9 moles of {{\text{O}}_2}  is calculated as follows:

\begin{aligned}{\text{Moles of }}{{\text{C}}_6}{{\text{H}}_{14}}&=\left( {{\text{20}}{\text{.9 mol }}{{\text{O}}_2}}\right)\left({\frac{{{\text{2 mol }}{{\text{C}}_6}{{\text{H}}_{14}}}}{{{\text{19}}\;{\text{mol }}{{\text{O}}_{\text{2}}}}}}\right)\\&={\text{2}}{\text{.2 mol}}\\\end{aligned}

The formula to calculate LFL for n-hexane is calculated as follows:

{\text{LFL for }}{{\text{C}}_6}{{\text{H}}_{14}}=\frac{{{\text{Stoichiometric amount of }}{{\text{C}}_6}{{\text{H}}_{14}}}}{2}                   …… (2)

Substitute 2.2 mol for the stoichiometric amount of {{\text{C}}_6}{{\text{H}}_{14}}  in equation (2).

\begin{aligned}{\text{LFL for }}{{\text{C}}_6}{{\text{H}}_{14}}&=\frac{{{\text{2}}{\text{.2 mol}}}}{2}\\&={\text{1}}{\text{.1 mol}}\\\end{aligned}

So LFL for n-hexane is 1.1 %.

(b) The LFL value for {{\text{C}}_6}{{\text{H}}_{14}}  calculated in part (a) is used to find its volume. This is done by using equation (3).

The formula to calculate the volume of {{\text{C}}_6}{{\text{H}}_{14}}  is as follows:

{\text{Volume of }}{{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{14}}}}=\left( {\frac{{{\text{LFL}}\left( {{\text{vol \% }}}\right){\text{for }}{{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{14}}}}}}{{100\;\% }}}\right)\left({{\text{Volume of air}}}\right)            

…… (3)

The LFL for {{\text{C}}_6}{{\text{H}}_{14}}  is 1.1 %.

The volume of air is {\text{1 }}{{\text{m}}^{\text{3}}} .

Substitute these values in equation (3).

\begin{aligned}{\text{Volume of }}{{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{14}}}}&=\left({\frac{{{\text{1}}{\text{.1 \% }}}}{{100\;\%}}}\right)\left({{\text{1}{{\text{m}}^3}}\right)\\&={\text{0}}{\text{.011}}\;{{\text{m}}^{\text{3}}}\\\end{aligned}

Learn more:

1. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: <u>brainly.com/question/3064603 </u>

2. Calculate the moles of ions in the solution: <u>brainly.com/question/5950133 </u>

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole concept

Keywords: stoichiometry, reactant, product, combustion, n-hexane, H2O, CO2, C6H14, LFL, stoichiometric amount, 1.1 %, 20.9 %, 20.9 mol, air, O2.

DochEvi [55]3 years ago
6 0
Combustion equation of n-hexane:

2C₆H₁₄ + 19O₂ → 12CO₂ + 14H₂O

a)
Assuming we have 100 moles of air,
Oxygen = 20.9 moles
n-hexane required = 20.9/19 x 2
= 2.2 moles

LFL = Half of stoichometric amount = 2.2 / 2 = 1.1
LFL n-hexane = 1.1% 

b)
1.1 volume percent required for LFL

1.1% x 1
= 0.0011 m³ of n-hexane required
You might be interested in
How many moles of magnesium chloride can be formed from 4.86 g of Mg and 21.27 g of Cl2?
Hoochie [10]

Answer:

Moles of magnesium chloride can be produced are 0.2 moles

Explanation:

The reaction of Mg with Cl2 is:

Mg + Cl₂ → MgCl₂

<em>Where 1 mole of Mg reacts per mole of Cl₂ to produce MgCl₂.</em>

<em />

As the reaction is 1:1, we need to convert the mass of both Mg and Cl₂ to moles. The lower number of moles will determine the moles of MgCl₂ that will be produced:

<em>Moles Mg -Molar mass: 24.3g/mol-:</em>

4.86g * (1mol / 24.3g) = 0.2 moles Mg

<em>Moles Cl₂ -Molar mass: 24.3g/mol-:</em>

21.27g * (1mol / 70.9g) = 0.3 moles Cl₂

As moles of Mg < moles of Cl₂, Mg is limiting reactant and moles of magnesium chloride can be produced are 0.2 moles

8 0
3 years ago
David's body breaks down the sandwich into small enough molecules that can be absorbed through his intestinal lining and then in
viva [34]

break down food into smaller molecules the body can use; absorb molecules into blood and carry them throughout the body; eliminate wastes from the body

4 0
3 years ago
Read 2 more answers
What are the properties of elements related to?
balu736 [363]
The answer you are looking for is A. the average atomic mass hope this helped have a nice day :)
3 0
3 years ago
Why is aluminum a substance
lidiya [134]
Aluminum is a substance because it is a particular type of matter that has particular and unique properties. aluminum is a unique element with a place on the periodic table
4 0
3 years ago
Read 2 more answers
A sample of nitrogen is initially at a pressure of 1.7 kPa, a temperature of -10 C and a volume of 7.5 m3. Then the volume is de
zhannawk [14.2K]

Answer:

\boxed{\text{2.6 kPa}}

Explanation:

To solve this problem, we can use the Combined Gas Laws:

\dfrac{p_{1}V_{1} }{T_{1}} = \dfrac{p_{2}V_{2} }{T_{2}}

Data:

p₁ = 1.7 kPa; V₁ = 7.5 m³;  T₁ =   -10 °C

p₂ = ?;          V₂ = 3.8 m³; T₂ = 200  K

Calculations:

(a) Convert temperature to kelvins

T₁ = (-10   + 273.15) K = 263.15 K

(b) Calculate the pressure

\begin{array}{rcl}\dfrac{1.7 \times 7.5 }{263.15} & = & \dfrac{p_{2} \times 3.8}{200}\\\\0.0485 & = & 0.0190p_{2}\\p_{2} & = & \textbf{2.6 kPa}\\\end{array}\\\text{The new pressure of the gas is \boxed{\textbf{2.6 kPa}}}

7 0
3 years ago
Other questions:
  • Equal volumes of two equimolar solutions of reactants a and b are mixed, and the reaction a+b→c occurs. at the end of 1h, a is 9
    12·1 answer
  • What is the noble gas configuration of lithium? (li)?
    6·1 answer
  • Which of the following molecules is nonpolar?<br> O A. CO2<br> O B. NO<br> ос. со<br> O D. SO2
    6·1 answer
  • Two mixed cylinders have exactly the same volume. Cylinder A has a higher fraction of Al than cylinder B. Is the mass of cylinde
    6·1 answer
  • Which element is an actinoid?
    13·2 answers
  • Can somebody help me name this organic compound!!​
    15·2 answers
  • An ionic bond always forms between ___ ion with a positive charge and ___ ion with a negative charge. This is not a multiple cho
    11·1 answer
  • How many moles are in 5.6 grams of Na?
    7·2 answers
  • Why is it necessary to have different types of equipment for the use in the laboratory?
    11·1 answer
  • The two reactions illustrated in the diagrams below often occur when a foreign substance enters the body.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!