Scientists ask questions, which is the basis for their investigations.
First, we need to state the chemical equation for the combustion of PH3

And the mass of PH3 is 17.0 grams and we need to know the moles.
In the periodic table, the atomic mass of the P (phosphorus) is 31 and the atomic mass of the H (hydrogen) is 1.
So, you sum the mass of P to the mass of H multiplied by 3 and you obtain this:

With this data, we can search the moles of PH3:
i think so.
i learned this recently and my textbook says that neutrons and protons are in the nucleus and electrons orbit around the nucleus. :)
i hope i was able to help
Fe: 2 x 55.845 = 111.69
O: 3 x 15.9994= 47.9982
111.69 + 47.9982 = 159.69 g/mol
Answer:
The answer to the question above is
The energy required to heat 87.1 g acetone from a solid at -154.0°C to a liquid at -42.0°C = 29.36 kJ
Explanation:
The given variables are
ΔHfus = 7.27 kJ/mol
Cliq = 2.16 J/g°C
Cgas = 1.29 J/g°C
Csol = 1.65 J/g°C
Tmelting = -95.0°C.
Initial temperature = -154.0°C
Final temperature = -42.0°C?
Mass of acetone = 87.1 g
Molar mass of acetone = 58.08 g/mol
Solution
Heat required to raise the temperature of solid acetone from -154 °C to -95 °C or 59 °C is given by
H = mCsolT = 87.1 g* 1.65 J/g°C* 59 °C = 8479.185 J
Heat required to melt the acetone at -95 °C = ΔHfus*number of moles =
But number of moles = mass÷(molar mass) = 87.1÷58.08 = 1.5
Heat required to melt the acetone at -95 °C =1.5 moles*7.27 kJ/mol = 10.905 kJ
The heat required to raise the temperature to -42 degrees is
H = m*Cliq*T = 87.1 g* 2.16 J/g°C * 53 °C = 9971.21 J
Total heat = 9971.21 J + 10.905 kJ + 8479.185 J = 29355.393 J = 29.36 kJ
The energy required to heat 87.1 g acetone from a solid at -154.0°C to a liquid at -42.0°C is 29.36 kJ