Answer:
The boiling point of a 8.5 m solution of Mg3(PO4)2 in water is<u> 394.91 K.</u>
Explanation:
The formula for molal boiling Point elevation is :

= elevation in boiling Point
= Boiling point constant( ebullioscopic constant)
m = molality of the solution
<em>i =</em> Van't Hoff Factor
Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .
In solution Mg3(PO4)2 dissociates as follow :

Total ions after dissociation in solution :
= 3 ions of Mg + 2 ions of phosphate
Total ions = 5
<em>i =</em> Van't Hoff Factor = 5
m = 8.5 m
= 0.512 °C/m
Insert the values and calculate temperature change:



Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K

= 373.15 K[/tex]
21.76 = T - 373.15
T = 373.15 + 21.76
T =394.91 K
It depends on the number of valence electrons required to make octet or duplet( in case of H)
. For example, Nitrogen(atomic number = 7) has electronic configuration(2,5) which means nitrogen has 5 valence electrons and requires 3 more electrons to complete its octet. After gaining 3 electrons from atoms of an element with less electronegativity than N, it forms nitride ion (
).
Hope this helps.
Ethics and Skepticism are integral to science because they are the basis for the need to lay explanations on various fields of science through experiment. This will enable science bring the right data and arguments through scientific methods in an accurate and a straight forward manner.
Hope this helped have an awesome day :)
Can someone help me out too? , on my question?
Answer:
The answer to your question is: ΔHrxm = -23.9 kJ
Explanation:
Data:
2Fe(s)+3/2O2(g)→Fe2O3(s), ΔH = -824.2 kJ (1)
CO(g)+1/2O2(g)→CO2(g) ΔH = -282.7 kJ (2)
Reaction:
Fe2O3(s)+3CO(g)→2Fe(s)+3CO2(g)
We invert (1) and change the sign of ΔH
Fe2O3(s) → 2Fe(s)+3/2O2(g) ΔH = 824.2 kJ
We multiply (2) by 3
3( CO(g)+1/2O2(g)→CO2(g) ΔH = -282.7 kJ) (2)
3CO(g)+3/2O2(g)→3CO2(g) ΔH = -848.1 kJ
We add (1) and (2)
Fe2O3(s) → 2Fe(s)+3/2O2(g) ΔH = 824.2 kJ
3CO(g)+3/2O2(g)→3CO2(g) ΔH = -848.1 kJ
Fe2O3(s) + 3CO(g)+3/2O2(g) → 2Fe(s)+3/2O2 + 3CO2(g)
Simplify
Fe2O3(s)+3CO(g)→2Fe(s)+3CO2(g) and ΔHrxm = -23.9 kJ