Answer:
you have simply written 2 matrices in the picture. Tell me which operation do you want to apply on these rectangular matrices
Step-by-step explanation:
Check the picture below.
since we know the radius of the larger semicircle is 8, thus its diameter is 16, which is the length of one side of the equilateral triangle. We also know the smaller semicircle has a radius of 1/3, and thus a diameter of 2/3, namely the lenght of one side of the small equilateral triangle.
now, if we just can get the area of the larger figure and the area of the smaller one and subtract the smaller from the larger, we'll be in effect making a hole/gap in the larger and what's leftover is the shaded figure.
![\bf \stackrel{\textit{area of a semi-circle}}{A=\cfrac{1}{2}\pi r^2\qquad r=radius}~\hspace{10em}\stackrel{\textit{area of an equilateral triangle}}{A=\cfrac{s^2\sqrt{3}}{4}\qquad s=\stackrel{side's}{length}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\left[ \stackrel{\textit{larger figure}}{\cfrac{1}{2}\pi 8^2~~+~~\cfrac{16^2\sqrt{3}}{4}} \right]\qquad -\qquad \left[ \cfrac{1}{2}\pi \left( \cfrac{1}{3} \right)^2 +\cfrac{\left( \frac{2}{3} \right)^2\sqrt{3}}{4}\right]}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20semi-circle%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20r%5E2%5Cqquad%20r%3Dradius%7D~%5Chspace%7B10em%7D%5Cstackrel%7B%5Ctextit%7Barea%20of%20an%20equilateral%20triangle%7D%7D%7BA%3D%5Ccfrac%7Bs%5E2%5Csqrt%7B3%7D%7D%7B4%7D%5Cqquad%20s%3D%5Cstackrel%7Bside%27s%7D%7Blength%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cleft%5B%20%5Cstackrel%7B%5Ctextit%7Blarger%20figure%7D%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%208%5E2~~%2B~~%5Ccfrac%7B16%5E2%5Csqrt%7B3%7D%7D%7B4%7D%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B1%7D%7B3%7D%20%5Cright%29%5E2%20%2B%5Ccfrac%7B%5Cleft%28%20%5Cfrac%7B2%7D%7B3%7D%20%5Cright%29%5E2%5Csqrt%7B3%7D%7D%7B4%7D%5Cright%5D%7D)
![\bf \left[ 32\pi +64\sqrt{3} \right]\qquad -\qquad \left[ \cfrac{\pi }{18}+\cfrac{\frac{4}{9}\sqrt{3}}{4} \right] \\\\\\ \left[ 32\pi +64\sqrt{3} \right]\qquad -\qquad \left[ \cfrac{\pi }{18}+\cfrac{\sqrt{3}}{9} \right]~~\approx~~ 211.38 - 0.37~~\approx~~ 211.01](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%2032%5Cpi%20%2B64%5Csqrt%7B3%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B%5Cpi%20%7D%7B18%7D%2B%5Ccfrac%7B%5Cfrac%7B4%7D%7B9%7D%5Csqrt%7B3%7D%7D%7B4%7D%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%5B%2032%5Cpi%20%2B64%5Csqrt%7B3%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B%5Cpi%20%7D%7B18%7D%2B%5Ccfrac%7B%5Csqrt%7B3%7D%7D%7B9%7D%20%5Cright%5D~~%5Capprox~~%20211.38%20-%200.37~~%5Capprox~~%20211.01)
96:
sugar: 1,2,3,4,5,6
flour:2,4,6,8,10,12
97:
yellow:3,6,9,12,15,18
blue:1,2,3,4,5,6
2:4 3:6 4:8
Any ratio equals 1:2 as long as you can divide the first number by itself to get 1 and the second number with the 1st number.
Example
2:4
Divide the first number by 2 and you get 1
Divide the second number by 2 and you get 2
So the ratio equals 1:2
Please make me brainliest
Answer:
dilation
Step-by-step explanation:
whenever the shape is dilated, or scaled by a factor of any number, the shape will change size and will become similar rather than congruent. congruent shapes have the same dimensions as the parent or original shape.