The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
Answer:
(A) Equation will be 
(B) RMS value of voltage will be 0.530 volt
Explanation:
We have given peak to peak voltage of ac wave = 1.5 volt
Peak to peak voltage of ac wave is equal to 2 times of peak voltage
So 

Frequency of ac wave is given f = 3 kHz
So angular frequency
= 2×3.14×3000 = 18840 rad/sec
So expression of equation will be
( As phase difference is 0 )
Now we have to find the rms value of voltage
So rms voltage will be equal to 
Explanation:
As per the law of conservation of energy, the final mechanical energy of Lora is equal to its initial mechanical energy. So, when Lora is at the bottom of ski run then her potential energy will change into kinetic energy.
Hence, 
Now, final kinetic energy that will be at the bottom of the ski run is as follows.
Let,

=
= 282.53 + 28656.97
= 28939.502 J
Thus, we can conclude that her final kinetic energy at the bottom of the ski run is 28939.502 J.