Yes that is a balaned equation
C. have similar properties
(this is because they have the same number of electrons in the outer orbital)
Question:
A spaceship enters the solar system moving toward the Sun at a constant speed relative to the Sun. By its own clock, the time elapsed between the time it crosses the orbit of Jupiter and the time it crosses the orbit of Mars is 35.0 minutes
How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.
Answer:
S = 5.508 × 10¹¹m
V = 2.62 × 10⁸ m/s
Explanation:
The radius of the orbit of Jupiter, Rj is 43.2 light-minutes
radius of the orbit of Mars, Rm is 12.6 light-minutes
Distance travelled S = (Rj - Rm)
= 43.2 - 12.6 = 30.6 light- minutes
= 30.6 × (3 ×10⁸m/s) × 60 s
= 5.508 × 10¹¹m
time = 35mins = (35 × 60 secs)
= 2100 secs
speed = distance/time
V = 5.508 × 10¹¹m / 2100 s
V = 2.62 × 10⁸ m/s
It is incorrect, because the identity of the original product has changed. Ca3(OH)2 does not exist! It is no longer calcium hydroxide. To balance an equation, you must manipulate the coefficients, a.k.a. the big numbers that go before reactants or products. Subscripts, the little numbers inside the reactants or products, cannot be changed without completely changing the substance.
Covalent bonding is a type of chemical bonding wherein there is a sharing of electrons to achieve chemical stability or the octet rule. For instance, the chlorine atom with one unpaired electron shares an electron to sodium to become stable. In the given examples, the situation that portrays covalent bonding is when Chlorine accepts 1 electron from calcium to form a stable bond.