Answer: Longitudinal Waves
Explanation: The particles of the medium pass parallel to the course that the heart beat moves. This sort of wave is a longitudinal wave. Longitudinal waves are usually characterised through particle motion being parallel to wave movement. A valid wave traveling thru air is a classic example of a longitudinal wave.
1) a) attract
The magnetic force between two magnetic poles is attractive for two unlike poles and repulsive for two like poles. Therefore we have:
1- For two north poles, the force between them is repulsive
2- For two south poles, the force between them is repulsive
3- For a north pole and a south pole, the force between them is attractive
In this problem, we are in the situation described in 3), so the force between the poles is attractive.
2) a) motion of electrons
While electric fields are produced by static electric charges, magnetic fields are produced by charges in motion (currents). In particular, a current in a wire (where a current is simply the motion of electrons inside the wire) produces a magnetic field whose intensity is

where
I is the current in the wire
r is the radial distance from the wire
And the direction of the field lines are such that the field form concentric circles around the wire.
Answer:
Solution
Explanation:
Solution:-
- The direction of motion of bus and car can be denoted by velocity vectors ( v1 and v2 ) respectively.
- On a page draw the velocity vector v1 vertically up denoting the direction of motion of bus from origin
- Similarly,draw the velocity vector v1 horizontally left denoting the direction of motion of car from origin.
- The force exerted by the car-bus interaction is always in the direction of motion.
- The force exerted by the bus is parallel to velocity vector as F1 and force exerted by the car is parallel to velocity vector as F2.
- The vector addition of of the two forces ( F1 and F2 ) will tell us the direction and magnitude of resultant force due to car-bus interaction.
- The resultant force will cause the car to be pushed off the road in the direction shown in the diagram.
Answer:
MA = 7
Explanation:
Mechanical Advantage = Load/Effort
From the question,
Load = 350N
Effort applied = 50N
Mechanical Advantage = 350N/50N
Mechanical Advantage = 7
Hence the mechanical advantage is 7