Answer:
Step-by-step explanation:
Given a function
, we called the rate of change to the number that represents the increase or decrease that the function experiences when increasing the independent variable from one value "
" to another "
".
The rate of change of
between
and
can be calculated as follows:

For:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

And for:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

<em>Translation:</em>
Dada una función
, llamábamos tasa de variación al número que representa el aumento o disminución que experimenta la función al aumentar la variable independiente de un valor "
" a otro "
".
La tasa de variación de
entre
y
, puede ser calculada de la siguiente forma:

Para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:

Y para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:

Answer:
see explanation
Step-by-step explanation:
(a)
A recursive formula allows any term in the sequence to be found by adding the common difference d to the previous term.
Here d = - 4 , then recursive formula is
=
- 4 with a₁ = 2
(b)
The explicit formula for an arithmetic sequence is
= a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Here a₁ = 2 and d = - 4, thus
= 2 - 4(n - 1) = 2 - 4n + 4 = 6 - 4n ← explicit formula
(c)
Using the recursive formula
a₁ = 2
a₂ = 2 - 4 = - 2
a₃ = - 2 - 4 = - 6
Using the explicit formula
a₅ = 6 - 4(5) = 6 - 20 = - 14
a₁₀ = 6 - 4(10) = 6 - 40 = - 34
a₁₀₀ = 6 - 4(100) = 6 - 400 = - 394
Answer:
709,007
Step-by-step explanation:
Look at the place values.
In 700, 000, the thousands column is in the third digit. Therefore add nine to that place.
In 700, 000 the ones column is the last digit. So add 7 to that place.