Missing data in your question: (please check the attached photo)
from this balanced equation:
M(OH)2(s) ↔ M2+(aq) + 2OH-(aq) and when we have Ksp = 2x10^-16
∴Ksp = [M2+][OH]^2
2x10^-16 = [M2+][OH]^2
a) SO at PH = 7 ∴POH = 14-PH = 14- 7 = 7
when POH = -㏒[OH]
7= -㏒[OH]
∴[OH] = 1x10^-7 m by substitution with this value in the Ksp formula,
∴[M2+] =Ksp /[OH]^2
= (2x10^-16)/(1x10^-7)^2
= 0.02 M
b) at PH =10when POH = 14- PH = 14-10 = 4
when POH = -㏒[OH-]
4 = -㏒[OH-]
∴[OH] = 1x10^-4 ,by substitution with this value in the Ksp formula
[M2+] = Ksp/ [OH]^2
= 2x10^-16 / (1x10^-4)^2
= 2x10^-8 Mc) at PH= 14
when POH = 14-PH
= 14 - 14
= 0
when POH = -㏒[OH]
0 = - ㏒[OH]
∴[OH] = 1 m
by substitution with this value in Ksp formula :
[M2+] = Ksp / [OH]^2
= (2x10^-16) / 1^2
= 2x10^-16 M
Answer:
a. 3; b. 5; c. 10; d. 12
Explanation:
pH is defined as the negative log of the hydronium concentration:
pH = -log[H₃O⁺] (hydronium concentration)
For problems a. and b., HCl and HNO₃ are strong acids. This means that all of the HCl and HNO₃ would ionize, producing hydronium (H₃O⁺) and the conjugate bases Cl⁻ and NO₃⁻ respectively. Further, since all of the strong acid ionizes, 1 x 10⁻³ M H₃O⁺ would be produced for a., and 1.0 x 10⁻⁵ M H₃O⁺ for b. Plugging in your calculator -log[1 x 10⁻³] and -log[1.0 x 10⁻⁵] would equal 3 and 5, respectively.
For problems c. and d. we are given a strong base rather than acid. In this case, we can calculate the pOH:
pOH = -log[OH⁻] (hydroxide concentration)
Strong bases similarly ionize to completion, producing [OH⁻] in the process; 1 x 10⁻⁴ M OH⁻ will be produced for c., and 1.0 x 10⁻² M OH⁻ produced for d. Taking the negative log of the hydroxide concentrations would yield a pOH of 4 for c. and a pOH of 2 for d.
Finally, to find the pH of c. and d., we can take the pOH and subtract it from 14, giving us 10 for c. and 12 for d.
(Subtracting from 14 is assuming we are at 25°C; 14, the sum of pH and pOH, changes at different temperatures.)
Larger elements are able to form in a supernova explosion because the star releases very large amounts of energy as well as neutrons, which allows elements heavier than iron to be produced.
<h3>What is Supernova?</h3>
This is referred to the explosion of a star and it resulting in larger elements being formed through a process known as nucleosynthesis and is usually accompanied by an increase in the brightness of the star.
The elements produced are usually larger than elements such as iron and examples include uranium, gold etc.
This is therefore the reason why it was chosen as the most appropriate choice.
Read more about Supernova here brainly.com/question/27492871
#SPJ1
Answer:
Q = 30355.2 J
Explanation:
Given data:
Mass of ice = 120 g
Initial temperature = -5°C
Final temperature = 115°C
Energy required = ?
Solution:
Specific heat capacity of ice is = 2.108 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 -T1
ΔT = 115 - (-5°C)
ΔT = 120 °C
Q = 120 g × 2.108 j/g.°C × 120 °C
Q = 30355.2 J
Answer:
By weight they have the same mass, but the number of atoms is different
Explanation: