The energy released from 1 gram of uranium is more than 1 million times greater than the energy released from 3 grams of coal is True.
<u>Explanation:</u>
Nuclear Fission is the process in which splitting of a nucleus takes place that releases free neutrons and lighter nuclei. The fission of heavy elements like "Uranium is highly exothermic" and releases "200 million eV" compared to the energy that is released by burning coal which gives a few eV.
In the given example, it is obvious that the energy released from 1 gram of uranium is more than that of the energy released from 3 grams of coal because the amount of energy released during nuclear fission is millions of times more efficient per mass than that of coal considering only
part of the original nuclei is converted to energy.
Answer:
To prepare a 1 M solution, slowly add 1 formula weight of compound to a clean 1-L volumetric flask half filled with distilled or deionized water. Allow the compound to dissolve completely, swirling the flask gently if necessary.
Explanation:
have a great day ahead ♥️
The molecular formula for hyponitrous acid is H2N2O2. and for nitroxyl is HNO.
The chemical compound HNO is also known as nitroxyl (common name) or Azanon (IUPAC name). In the gas phase, it is widely recognized. In the solution phase, the short-lived intermediate nitroxyl can develop. Nitric oxide (NO) is reduced to form the conjugate base, NO, which is isoelectronic with dioxygen.
By oxidizing hydroxylamine with CuO , HgO, and Ag 2 and by oxidizing hydroxylamine with N2O3 in methyl-alcoholic solution, we can create hyponitrous acid.
Learn more about chemical compound here -
brainly.com/question/12166462
#SPJ4
Answer:
7.3 g (NH₄)₃PO₄
Explanation:
The balanced equation for the reaction is:
H₃PO₄ + 3 NH₃ ----> (NH₄)₃PO₄
To find the mass of ammonium phosphate ((NH₄)₃PO₄) produced, you need to (1) convert grams NH₃ to moles NH₃ (via the molar mass from the periodic table), then (2) convert moles NH₃ to moles (NH₄)₃PO₄ (via mole-to-mole ratio from balanced equation), and then (3) convert moles (NH₄)₃PO₄ to grams (NH₄)₃PO₄ (via molar mass from periodic table). Make sure to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 2 sig figs because the given value (2.5 grams) has 2 sig figs.
Molar Mass (NH₃): 14.01 g/mol + 3(1.008 g/mol)
Molar Mass (NH₃): 17.034 g/mol
Molar Mass ((NH₄)₃PO₄):
3(14.01 g/mol) + 12(1.008 g/mol) + 30.97 g/mol + 4(16.00 g/mol)
Molar Mass ((NH₄)₃PO₄): 149.096 g/mol
2.5 g NH₃ 1 mole NH₃ 1 mole (NH₄)₃PO₄ 149.096 g
--------------- x -------------------- x --------------------------- x --------------------------
17.034 g 3 moles NH₃ 1 mole (NH₄)₃PO₄
= 7.3 g (NH₄)₃PO₄