The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
The iupac name is ethylene glycol
Atoms are the basic units of matter and the defining structure of elements. We count the number of atoms by the total number of elements present in the compound. In this case, we have 1 atom of Si and 2 atoms of oxygen which would have 3 total number of atoms.
Answer:
The correct answer is skeleton equation.
Explanation:
In chemistry, the skeletal formula of a compound is an abbreviated representation of its molecular structure. Skeleton formulas are used because they clearly show complicated structures, they are fast and simple to draw.
All atoms that are not carbon or hydrogen are represented by their chemical symbol. The relative amounts of reagents and products are not indicated.
Have a nice day!
Rutherford's Gold Foil Experiment proved the existence of a small massive center to atoms, which would later be known as the nucleus of an atom. Ernest Rutherford, Hans Geiger and Ernest Marsden carried out their Gold Foil Experiment to observe the effect of alpha particles on matter.