Answer:
The answer to the question is
3340800 m far
Explanation:
To solve the question, we note that acceleration = 29 m/s²
Time of acceleration = 8 minutes
Then if the shuttle starts from rest, we have
S = u·t+0.5·a·t² where u = 0 m/s = initial velocity
S = distance traveled, m
a = acceleration of the motion, m/s²
t = time of travel
S = 0.5·a·t² = 0.5×29×(8×60)² = 3340800 m far
One of the efficient concepts that can help us find the number of turns of the cable is through the concept of induced voltage or electromotive force given by Faraday's law. The electromotive force or emf can be described as,

Where,
N = Number of loops
B = Magnetic Field
A = Cross-sectional Area
= Angular velocity
Re-arrange to find N,

Our values are given as,




Replacing at our equation we have:



Therefore the number of loops of wire should be wound on the square armature is 32 loops
Answer:
The correct option is D
Explanation:
This question can be better understood when discussed using the Newton's first law of motion which states that an object would continue to move with a uniform speed (in a straight line) unless acted upon by an external force. What happens here (in the question) is that the bike rider would have continued moving at a constant speed (to the right) if not for the opposing force of the wind that acted against her (to the left). <u>This wind/force would cause her speed to reduce or slow down (as posited by the law)</u>.
Answer:
Explanation:
Due to heat energy , metal expands . Formula for linear expansion is as follows .
L = l ( 1 + α Δt )
where L is expanded length , l is original length , α is coefficient of linear expansion and Δt is increase in temperature .
To pass the sphere through the ring , the diameter of both ring and sphere should be same after heating . Let after increase of temperature Δt , their diameter becomes same as L . The linear coefficient of brass and steel are
20 x 10⁻⁶ and 12 x 10⁻⁶ respectively .
For steel sphere ,
L = 25 ( 1 + 12 x 10⁻⁶ Δt )
For brass ring
L = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
25 ( 1 + 12 x 10⁻⁶ Δt ) = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
1.004( 1 + 12 x 10⁻⁶ Δt ) = ( 1 + 20 x 10⁻⁶ Δt )
1.004 + 12.0482 x 10⁻⁶ Δt = 1 + 20 x 10⁻⁶ Δt
.004 = 7.9518 x 10⁻⁶ Δt
Δt = 4000 / 7.9518
= 503⁰C.
final temp = 503 + 15 = 518⁰C .