Answer:

Explanation:
First, we are going to calculate the electrical potential in the point middle between the two charges
Remember that the electrical potential can be calculated as:

Where 
and it is satisfy the superposition principle, thus


The electrical potential at 10 cm from charge 1 is:


Since the work - energy theorem, we have:

where q is the electron's charge and m is the electron's mass
Therefore:


Answer
Given,
Time period of star,T = 3.37 x 10⁷ s
Radius of circular orbit,R = 1.04 x 10¹¹ m
a) Angular speed of the planet

b) tangential speed

v = 1.94 x 10⁴ m/s
c) centripetal acceleration magnitude

a = 3.62 x 10⁻³ m/s²
Answer:
7500 m/s
Explanation:
We can use the equation velocity of a wave equals wavelength times frequency. Therefore, v = wavelength*f = (25 m)(300 Hz) = m/s7,500
Answer:
Well if you want to be sure you should just throw it to the ground so then when he lands he can catch it.
If the cannon throws the banana with the same force the monkey falls
(m.g=Fz <=> m.9,81N/kg=...N).
Then the throw will slow down because of the gravitational pull.
Because the banana cannon is selfmade you can choose what mass the bananas in question have, so let that be the same as the monkeys.
The monkey falls with the speed of 9,81m.s => so it takes the monkey 7,1s to land.
If the cannon can shoot the banana at the same speed the monkey falls then they would cross in the middle.
So to do so you need to throw the bananas with a speed of at least 9,81m.s
Soo ... throw them with a force of that is greater then the gravitational pull and things will work out.
I'm sorry I don't know why I wrote all of this irrelevant information it's 2:21 right now and I'm tired.
kind regards